Contact Information

<table>
<thead>
<tr>
<th>Group Name:</th>
<th>Taharua Stakeholder Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact person:</td>
<td>Personal</td>
</tr>
<tr>
<td>Region:</td>
<td>Hawkes Bay Regional Council</td>
</tr>
<tr>
<td>Country:</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Phone:</td>
<td>Personal</td>
</tr>
<tr>
<td>Email:</td>
<td>agvice@xtra.co.nz</td>
</tr>
</tbody>
</table>

Who are we:

We are a group of eight local landowners that operate in the Taharua Catchment, in the Hawkes Bay Region. The Taharua Stakeholder Group (TSG) was formed in 2009 in response to increasing nitrate levels in the Taharua River.

The Taharua Catchment flows into the Mohaka River and out to sea in Hawkes Bay Regional Council Territorial Authority.

The TSG supports a balanced approach that recognises environmental limits and provides for a range of benefits, including sustainable businesses. Connections across the Mohaka catchment (“mountains to sea”) and to future generations are important. The TSG is interested in “how we get there” as well as “where we want to be”. This means stakeholders (including the Regional Council) supporting each other and taking joint responsibility for the future.

All TSG representatives have endorsed a vision of “protecting environmental values for future generations” and being “socially and culturally responsible” and “providing economic sustainability.”

The economic wellbeing of landowners is a critical consideration in how, when and who acts to improve water quality issues in the rivers.

TSG “pillars”

Council and the TSG believe a successful strategy needs to combine a partnership approach to achieve continuous improvement with solutions that can endure landowner changes or shifts in intensive land uses.
The TSG was successful in stabilising, and then decreasing nitrate levels in the river with substantial changes made on farms. At about this time there was a change of direction within the Hawkes Bay Regional Council (HBRC) and the support/partnership of HBRC disappeared as the staff involved were directed to work elsewhere. This was a key issue for the group, and the “partner” had left, and one of the consequences of this was that access to the instream water quality data was lost.

There have subsequently been several changes in ownership and management within the catchment, and we have found that Nitrogen levels have been increasing in the river. Landowners initiated contact with the HBRC again to find out more about the issue, and to that end the TSG has been meeting monthly for the last 8 months. All properties are currently developing their Farm Environment Plans (FEP) and will also be doing catchment analysis to investigate the impacts of community and individual actions.

We would like the to present and speak to our submission should opportunity arise.

The Taharua Catchment

- A harsh climate, free-draining pumice flats and underlying shallow groundwater makes this a challenging catchment to farm, but landowners are committed to investigating ways to improve water quality.
- **Location:** Taupo volcanic plateau, west of SH5 approximately 30 km from Taupo on the western edge of the Hawke’s Bay region, bordering Bay of Plenty.
- **Description:** Headwater catchment (13,409 hectares) of Mohaka River. Taharua River is spring sourced and groundwater-fed. Can contribute over 50% of upper Mohaka flow.
- **Land uses:** dairy (about 35% of catchment), forestry, pasture (some sheep/beef), native forest/scrub.
- **First developed:** late 1960s (sheep and beef). Government subsidised

Points that we wish to submit on:

Controlling intensive winter grazing:

<table>
<thead>
<tr>
<th>What is proposed</th>
<th>What it means</th>
</tr>
</thead>
</table>
| Winter grazing on forage crops is to be given a set definition, as well as minimum standards. It will be a permitted activity on land with a slope less than 10 or 15 degrees (to be decided). | • Forage crop defined as a crop grazed in situ, including brassicas, and beet and root crops; but not including perennial pasture, short rotation grass species, and cereal crops;
• Grazing does not occur on land with a slope equal to or greater than 10[15 degrees]
• Grazing does not take place on more than 30ha [50ha] or 5% [10%] whichever is greater cumulatively or in one contiguous area of the farm;
• Graze from the top of the slope towards the waterbody or critical source area;
• Do not graze any critical source area;
• Retain vegetated riparian strip of 5m [20m] from waterbodies, ditches;
• Re sown within 1 month; |
TAHARUA STAKEHOLDER GROUP

<table>
<thead>
<tr>
<th>No pugging to a depth of more than an average of 20cm [10cm] for more than 50% of the paddock</th>
</tr>
</thead>
<tbody>
<tr>
<td>For winter grazing that does not meet the permitted activity standards (e.g. on a slope equal to or greater than 10 or 15 degrees) it will become a restricted discretionary activity (e.g. needing resource consent).</td>
</tr>
<tr>
<td>Activities that do not meet the PA standards this includes winter grazing on forage crops on land above 10- or 15-degrees slope.</td>
</tr>
<tr>
<td>• Need FW-FP;</td>
</tr>
<tr>
<td>• Total area under forage crop to not exceed the highest annual amount of area in annual forage crop in any farm year between 2013/14 and 2018/19.</td>
</tr>
</tbody>
</table>

Issue:
The issue here is that it is input regulated, not based on the output. Any rules should be based on science and the effects of that activity. We disagree with the use of area or a % of land platform that is a maximum area allowed for crop grazing (this is also caught up with the land use intensification rule). We disagree with the use of pugging as a measure

Reasons:

Impact on farm. Those farms in dairying already have Effluent discharge consents, and with the Plan change for Mohaka there will likely be farming consents (Land Use), so why do we need a grazing consent also. This is all at extra cost and can be managed as part of a landuse consent and within the Farm Environment Plan (FEP). We all have Effluent discharge consents for a certain number of animals and need the winter feed to maintain this. Crops enable animals to be fed well over winter. All farms in the catchment use winter cropping to feed animals and keep them on farm in winter. With keeping animals on the farm, we are not shifting the problem to another catchment and we can better manage animal health and our environmental footprint.

The use of a specific area only able to be used for cropping does not make sense. Ten percent of a platform is a usual industry metric for regrassing, so why do we need a consent for areas above this.

Crop area does not consider the type of crop that is being grown and the area needed to feed the animals. E.g. 30 tonne dry matter (tDM) Fodder crop vs a 12-15 tDM swede crop. Having a larger cropping area means that there is potentially less damage and the animals do not have to be cramped into such a small area (Lower effective stocking rate). Environmental risks associated with winter grazing on forage crops relate to the intensity of the operation, the soils it occurs on, the way the activity is being undertaken and the proximity to a receiving freshwater body. Having rules for area and the slope restrictions may not give the desired outcomes.

We oppose the pugging standard for winter grazing on forage crops, as this would effectively make most winter grazing activities non-compliant regardless of the actual impact on soil health or loss, or animal welfare. There are also issues with how realistically it would be implemented.

Alternative
We propose an output, effects management plan in an FEP which will consider the specifics of each property and the catchment. For example, the FEP will contain a Nitrogen Management Plan and a Phosphorus Management plan to specifically address these points and their impacts on the river. Our bottom line for winter grazing management on all properties will be good management.
practices to manage and mitigate any impacts from winter grazing. We support the establishment of standards based on Industry Good Management Practice Principles.

For example
If we were to aim for a focus on soil structure then we could use a lower yielding extensive crop, this means we would have a lower effective stocking rate over each m² on the crop. With the soil structure focus we could also utilise on/off grazing to minimise impact to the soils. The less damage to the soil the quicker we can put plants in the soil to maintain cover. Also, less damage to the soil means less erosion and runoff.

This example highlights why having specific input rules would not be a good solution. The group considers that this should be measured on effects only with farms able to implement best practice to minimise any impact but also remain economically viable.

Restricting further intensification:

<table>
<thead>
<tr>
<th>What is proposed</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrictions placed on intensification on land-use</td>
<td>Intensification, including changing land-use system, irrigation development, and increases in winter grazing will require a consent and will only be allowed where it can be demonstrated there will be no increase in pollution caused by the activity. It is proposed that existing consents will prevail over these provisions, unless consents are reviewed by councils.</td>
</tr>
</tbody>
</table>

Issue:
Over half the farms in the catchment have changed ownership and/or management in the reference period. As a result, the land is being managed quite differently. The use of a rolling average in the proposed reporting period could disadvantage business owners, contract milkers or sharemilkers and shareholders in the blocks of Maori land inside the catchment.

Reasons:
Farms have changed ownership and/or management. Therefore, there is no ‘status quo’ and does not represent an equitable situation for the parties.

Alternative
We propose using 2013-2019 as the reference years with the highest being used as the reference point. We also propose farming within the output of this reference period for E. coli, sediment and phosphorous, not just Nitrogen.
Farm plans:

<table>
<thead>
<tr>
<th>What is proposed</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory farm plans</td>
<td>All farmers will be required to have a farm environment plan with a freshwater module. The freshwater module is very prescriptive and includes:</td>
</tr>
<tr>
<td></td>
<td>• Requirements for fencing which are unclear if override Reg 360;</td>
</tr>
<tr>
<td></td>
<td>• Requirement to measure all emissions (which implies the need to use a range of tools)</td>
</tr>
<tr>
<td></td>
<td>• Requirement to demonstrate you are reducing all your emissions.</td>
</tr>
</tbody>
</table>

Issue:
Farm Environment Plans need to reflect the farming business and its interaction with the land and water interface. The possible prescriptiveness that is proposed, especially that of the freshwater module, will limit innovation and may create unintended consequences.

Reasons:
Mandatory and prescriptive FEP’s will have little or no engagement at a farmer or landowner level. There will be no buy in or engagement by the landowners. This will lead to defensiveness rather than proactive approaches.

Alternative
The use of FEP’s but not as a prescription, but a tailored approach to each property to identify risks and management to mitigate or prevent impacts. A baseline of what could be included could be supplied.

For example
We support the use of tailored, individualised Farm Environment Plans for properties. All the properties in the group have either completed or are in the process of completing FEP’s for their land. This was agreed as a group and started nearly immediately. The group is also aiming to get catchment analysis done so the biggest impact (whether that is at a catchment or property level) can be identified and acted upon. Other actions include testing all tributaries into the Taharua to identify any potential hot spots – this means energy and money can be focussed on the right place.

Immediate action to reduce nitrogen loss:

<table>
<thead>
<tr>
<th>What is proposed</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interim measures to immediately reduce nitrogen leaching in certain catchments</td>
<td>Three options proposed:</td>
</tr>
<tr>
<td></td>
<td>1. Highest leaching farms in identified catchments over certain threshold would need to reduce leaching as modelled by OVERSEER.</td>
</tr>
<tr>
<td></td>
<td>2. National cap on use of nitrogen fertiliser (e.g. max amount per hectare per year).</td>
</tr>
<tr>
<td></td>
<td>3. Farmers in identified catchments would have to plan immediate reductions using FEPs</td>
</tr>
</tbody>
</table>
Issue:

Most of the land in the Taharua is held by four large land owners, this means that some of the approached listed would be very difficult to make work. Due to the small number of farms we do not fit option 1 at all and disagree with option 2.

Reasons:

Option 1 as listed would mean that a large proportion of the catchment would be out of business immediately – this is due to the low sample number (if the 75th percentile approach were to be used). The impact a single farm can have on the group is significant unlike other Schedule One catchments with hundreds of farms inside them. Therefore, this is not a viable option. We disagree with Option 2 as it is input based, not output/results focussed.

Alternative

We support Option 3 - to use FEP’s to manage and mitigate the on-farm impacts. In this instance it would include a Nitrogen Management Plan to specifically address the N reductions needed, but in a way that will not cripple the business.

For example

Current FEP’s are addressing cropping management a year in advance to ensure that there is no cropping on areas near the Taharua river.

Nitrogen and phosphorus attributes and new limits:

<table>
<thead>
<tr>
<th>What is proposed</th>
<th>What it means</th>
</tr>
</thead>
<tbody>
<tr>
<td>New limit for dissolved inorganic nitrogen (DIN)</td>
<td>Bottom line in rivers for DIN proposed to be 1.0mg/l (5-year median). This is different to the nitrate toxicity attribute in place. The DIN bottom line is in addition to this.</td>
</tr>
<tr>
<td>New limit for dissolved reactive phosphorous (DRP)</td>
<td>Bottom line in rivers for DRP to be 0.018mg/l (5-year median).</td>
</tr>
</tbody>
</table>

Issue:

We question how the concentrations especially the Dissolved Inorganic Nitrogen (DIN) of 1 mg/l were derived and how and where it is to be measured. We have a length of stream with several different concentrations measured with different values -which one is used?

Reasons:

As things stand currently most of the water samples in the river would be over this value and to decrease to a level of 1 mg/l in the upper river would mean a 70% decrease required. This would have serious economic impact on the farming businesses and land values in the catchment.

Alternative

We propose that the Regional Council should set an appropriate level that gives the desired water quality outcomes whilst maintaining the community and business in the catchment. The farms are major employees in the area with most staff living on farm. The council has the scientific data on the river and its impacts and are best placed to set the values/targets in the river.
We propose a river average value for the DIN, with the actual value needed to be met set by HBRC.

For example

There has been previous work done in the catchment by the HBRC scientists, and water quality targets suggested from this. This is local, pertinent and science-based data and is the most appropriate to use for the catchment. Also given the Regional Council directive under the current NPS and the relationship that they have had with the catchment they are better places to set the limits based on social, cultural, economic and environmental factors which suit the community and catchment.

Definition of a waterway

Issue:
The definition of a waterway and how it is measured is unclear, this impacts on stock exclusion requirements and what is and is not a waterway.

Reasons:
This has impacts on how and what is needed to be done. If greater than 1 m wide it is a waterway that needs to be fenced for example, and if < than 1 m the impacts can be managed within the FEP document. Ephemeral water ways are to be managed within the FEP

Alternative
We propose that the definition of where to measure a waterway is “the formed base of the active river bed” is the unit of measurement within the waterway.

Other comments on the proposed National Environmental Standards for Freshwater:

As a group we question the appropriateness that we are a Schedule 1 catchment. We have a strong history and a good partnership with the Hawkes Bay Regional Council. We have been proactively working on this issue well before the current freshwater proposals. We are part of the Mohaka catchment, and this is the next catchment to be examined by HBRC. We seek to be removed from the Schedule 1 catchment list, and to continue to be able to proactively work with HBRC and ourselves as a community to meet the agreed targets.