
 

 

  
 

 

 

 

 

Statistical models, indicators and trend analyses for 
reporting national-scale river water quality) 

(NEMAR Phase 3) 

Prepared for Ministry for the Environment 

May 2013 

 

 



© All rights reserved.  This publication may not be reproduced or copied in any form without the 
permission of the copyright owner(s).  Such permission is only to be given in accordance with the 
terms of the client’s contract with NIWA.  This copyright extends to all forms of copying and any 
storage of material in any kind of information retrieval system. 

Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this 
document is accurate, NIWA does not give any express or implied warranty as to the completeness of 
the information contained herein, or that it will be suitable for any purpose(s) other than those 
specifically contemplated during the Project or agreed by NIWA and the Client. 

 

Authors/Contributors: 
M J Unwin 
S T Larned 

For any information regarding this report please contact: 

Scott Larned 
 
 
+64-3-343 3834 
scott.larned@niwa.co.nz 
 

National Institute of Water & Atmospheric Research Ltd 

10 Kyle Street 

Riccarton 

Christchurch 8011 

PO Box 8602, Riccarton 

Christchurch 8440 

New Zealand 

 

Phone +64-3-348 8987 

Fax +64-3-348 5548 

 

NIWA Client Report No: CHC2013-033 
Report date:   April 2013 
NIWA Project:   MFE13502 
 
 
 

 

 



 

Statistical models, indicators and trend analyses for reporting national-scale river water quality  

 

Contents 
 

Summary ............................................................................................................................... 5 

1 Introduction ................................................................................................................. 9 

2 Methods ..................................................................................................................... 11 

2.1 Compiling monitoring data .................................................................................. 11 

2.2 Data processing ................................................................................................. 12 

2.3 Rules for including monitoring sites in models and trend analyses ..................... 14 

2.4 Random forest models for predicting physical-chemical water quality and 

invertebrate community metrics .......................................................................... 14 

2.5 Random forest models for predicting composite water quality indices ................ 15 

2.6 VISC WQI .......................................................................................................... 19 

2.7 Composite index ................................................................................................ 19 

2.8 Temporal trends in macroinvertebrate community indices .................................. 20 

2.9 Temporal trends in water quality variables ......................................................... 20 

3 Results ....................................................................................................................... 22 

3.1 Deliverable 1: Data compilation .......................................................................... 22 

3.2 Deliverable 2. Random forest models for predicting physical-chemical water 

quality ................................................................................................................ 23 

3.3 Deliverable 3. Random forest model for predicting CCME-WQI and VISC-

WQI scores ........................................................................................................ 28 

3.4 Deliverable 4. Random forest models for predicting composite index scores ..... 29 

3.5 Deliverable 5. Random forest models for predicting temporal trends in 

macroinvertebrate community indices ................................................................ 32 

3.6 Deliverable 6. Random forest models for predicting trends in physical and 

chemical water quality variables ......................................................................... 33 

4 Discussion ................................................................................................................. 36 

4.1 Random forest models ....................................................................................... 36 

4.2 CCME-WQI, VISC-WQI and composite indices .................................................. 37 

4.3 Trend analyses................................................................................................... 41 

5 Acknowledgements ................................................................................................... 44 

6 References ................................................................................................................. 45 



 

 Statistical models, indicators and trend analyses for reporting national-scale river water quality  

 

Appendix A Graphical summaries of national state and trend analyses for 

12 water quality variables. ........................................................................................ 47 

Appendix B Graphical summaries of national state and trend analyses for 

four invertebrate community metrics. ..................................................................... 48 

Appendix C Graphical summaries of national state and trend analyses for 

six multi-metric and composite water quality indices. ........................................... 49 

 

Tables 

Table 1: Diagnostic statistics and random forest model performance for each 
water quality variable. 24 

Table 2: Importance scores1 from RF models for predictors of water quality 
variables. The percent of variability in each variable explained by the RF 
model is in the top row, in parentheses. 25 

Table 3: Diagnostic statistics and random forest model performance for four 
macroinvertebrate community variables. 26 

Table 4: Importance scores from RF models for predictors of invertebrate 
community metrics and water quality indices. 27 

Table 5: Summary statistics for three base indices (CCME, VISC-WQI, SQMCI-
hb) and four composite indicators used to estimate random forest 
models. 30 

Table 6: Number of sites showing significant and meaningful trends in 12 water 
quality variables, 2000-2010, based on monthly and quarterly time 
series. 34 

Table 7: Importance scores for predictors of 10-year trends in water quality 
variables. 35 

 
 

Figures 

Figure 1: Distribution histograms for the 12 water quality variables, 4 invertebrate 
community metrics, and 6 indices considered in this study. 17 

Figure 2: Distribution of predicted values for six water quality indices over all 
NZReaches (N = 574,502). 31 

 
 

 
 
Reviewed by Approved for release by 
 

  
 
Graham McBride Jochen Schmidt 
 
 



 

Statistical models, indicators and trend analyses for reporting national-scale river water quality  5 

 

Summary 
The New Zealand Ministry for the Environment (MfE) is required to report on river water 

quality and ecological state, and on temporal trends in these metrics. In 2011 MfE initiated 

the National Environmental Monitoring and Reporting (NEMaR) project, which aims to 

establish more consistent and dependable monitoring procedures for national reporting. This 

report concerns three components of NEMaR: 

1. compiling national datasets on water quality and stream macroinvertebrate 

communities; 

2. developing predictive models relating water quality state and trends to metrics 

of catchment-scale geography, climate, geology, and land cover; and 

3. trialling the use of composite indices, based on selected water quality and 

invertebrate community metrics, as a tool for characterising national-scale 

environmental variation. 

We assembled data from regional council State of Environment and NIWA’s National River 

Water Quality Network programmes into two parallel databases, representing water quality 

and macroinvertebrate communities, respectively. Water quality data were screened to 

ensure consistency of measurement procedures and units, and to remove gross outliers. 

Variables used for this report were water clarity (CLAR), suspended sediment (SS), and 

turbidity (TURB); temperature (TEMP); dissolved oxygen concentration (DO) and percent 

saturation (DOSAT); Escherichia coli concentration (ECOLI); and five measures of dissolved 

nutrients including total nitrogen (TN) and total phosphorus (TP). 

Invertebrate data were pre-processed to ensure taxonomic resolution and counting 

procedures were consistent across all data sets, and used to generate four invertebrate 

community metrics. These were total number of taxa (TAXA); number of taxa from the insect 

orders Ephemeroptera, Plecoptera and Trichoptera (EPTtaxa); the percentage of EPT 

individuals (%EPTabund); and the Semi-Quantitative Macroinvertebrate Community Index for 

hard-bottom streams (SQMCI-hb). We also calculated a suite of river condition indices which 

combine multiple water quality metrics into a single index, and have recently been trialled in 

New Zealand at regional scales. These were the Canadian Council of Ministers for the 

Environment water quality index (CCME WQI), the Victorian Index of Stream Conditions 

(VISC-WQI), and various composite indicators based on combinations of the CCME-WQI, 

VISC-WQI, and SQMCI-hb. 

The resulting data set included 789 water quality sites and 519 invertebrate sites. We 

obtained catchment-level descriptors for all sites by selecting relevant variables from two 

classification systems which are commonly used to classify New Zealand rivers: the River 

Environment Classification (REC), and the Freshwater Environments of New Zealand 

(FWENZ). We used data collected since 1 January 2006 to characterise current state, but 

used all available data from 1 January 2000 for trend analysis so as to provide more robust 

estimates of trend strength and direction. 

We used random forests, a form of multivariate regression, to model 50 water quality 

variables (log-transformed where appropriate), indices, and trends using 28 site-specific 

catchment descriptors as predictor variables. We then used these models to predict each 
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variable for all mainland New Zealand rivers represented by the REC at a mean spatial scale 

of 740 m. 

The most successful models, for TN, ECOLI, TP, and SQMCI-hb, explained over 70% of the 

observed site-to-site variation, with another five models (TEMP, CLAR, TURB, nitrate 

nitrogen (NO3N), EPTtaxa) explaining 65%-69% of observed variation. Leading predictors 

varied among models, but generally included measures of catchment topography (e.g., 

elevation, mean slope); climate (e.g., rainfall variability, mean temperature); and catchment 

land-cover (particularly the percentage of the catchment covered by indigenous forest or 

heavy pastoral agriculture). Predictions based on these models yielded credible 

representations of regional-scale variation in water quality, which was predicted to be highest 

in elevated catchments along the main axis of both islands, intermediate in more impacted 

hill-country or lowland catchments, and lowest in intensively developed lowland areas such 

as Waikato, Manawatu, Canterbury, and Southland. 

Trends in water quality variables since 2000 suggest that water clarity has declined (and 

turbidity has increased) in Waikato; that NO3N has increased in Waikato and Southland; and 

that both NO3N and TP have decreased in the lower North Island. Trends in other variables 

(e.g., ECOLI, DRP) were less consistent, with increasing and decreasing trends often 

apparent at neighbouring sites in the same region. RF models with trend strength as the 

dependent variable generally performed poorly, with none explaining more than 42% of 

observed site to site variation, and most explaining less than 20%. However, our analyses 

were confounded by limited availability of data, and by the large number of sites for which no 

significant trend was apparent. We therefore caution readers that the trend modelling results 

should be interpreted as illustrating the difficulty of obtaining credible fits rather than 

providing information for State of the Environment reporting. 

Similar comments apply to our analysis of trends in invertebrate community metrics, for 

which the available data at each site were limited to a 10-year time series of annual sample 

data. Consistent regional trends were sometimes apparent for metrics related to the number 

of invertebrate taxa present, but RF models for these trends did not yield credible results and 

their relevance to variation in water quality is unclear. Large-scale spatial patterns in 

predicted trend direction were apparent in some regions, but bore little if any relationship to 

climatic or environmental gradients. 

Results for the CCME WQI, VISC-WQI, and related composite indicators, were also 

problematical. Applying these indices nationally, as opposed to the region-based contexts in 

which they were previously trialled, involved making numerous subjective choices driven by 

arbitrary factors such as data availability; choice of variables on which each index was to be 

based; the time period covered by each index; the reference conditions used to specify 

threshold values; and regional variation in reporting procedures. CCME WQI calculations 

were particularly hampered by regional variation in the water quality variables measured, 

requiring a trade-off between more robust indices incorporating a large subset of variables 

but with very limited spatial coverage, and less robust indices with broader spatial coverage. 

Index scores tended to be highly clumped, with scores at most sites falling within a relatively 

narrow range. This behaviour is partly driven by the choice of reference conditions, which – 

for the CCME WQI – were so stringent that most sites scored below 45 (ranked as “poor”) on 

a scale of 0-100. However, all index calculations involve multiple levels of averaging, so that 
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sites tend to clump together in all but the most extreme cases. RF models gave plausible fits 

(>50% explained site-to-site variation) for three of the six indices we investigated, but 

performed worse when used to predict index scores for all rivers represented by the REC. All 

predictions suggested a tendency for water quality to be highest in upland catchments and 

lowest in lowland catchments, particularly those dominated by heavy pastoral agriculture. 

These results are consistent with models for the individual water quality variables used to 

calculate each index, but add no further insight into regional-scale trends. 

The results of this study have significant implications for the NEMaR project. First, our 

findings confirm that viable multivariate models can be developed for predicting the current 

state of commonly used water quality variables and invertebrate community metrics. A 

priority for the future is to reduce prediction uncertainty, and hence improve stakeholder 

uptake of results, by establishing new monitoring sites to fill gaps in the environmental 

gradients used for modelling, and also by optimising the model fitting process. Options for 

achieving this include identifying optimal predictor sets for each water quality variable; 

trialling new or updated predictors incorporating recent revisions to the REC and LCDB; and 

exploring alternatives to RF for model-fitting. 

Second, the water quality data sets available for this study appear to be of limited value for 

predicting long term water quality trends at a national scale. Significant trends were apparent 

for some variables when analysed at local and regional scale, but the data did not yield 

credible models when used to predict trends at national scale. Possible reasons for this 

result include the limited number of sites available for long-term trend analysis; the paucity of 

trends at these sites that were both significant and meaningful; and the potential for regional-

scale trends to be confounded by regional variation in management practices. It may also 

reflect our reliance on explanatory variables which potentially change with time (e.g., 

catchment land cover), but for which the available descriptors were measured at a single 

point in time. In particular, we predicted monotonic changes based on explanatory variables 

that are either constant (e.g., altitude), or change over temporal scales much longer than the 

10-year analysis period (e.g., annual rainfall). A possible remedy would be to use data from 

LCDB1 (1996-1998) and the recently created LCDB3 (2008-2009) to develop predictors 

more accurately representing contemporary changes in land-cover. 

Third, considerable further work is necessary before multi-metric and composite water-quality 

indices can be consistently generated and interpreted at a national scale. Our experience 

with the CCME WQI and VISC-WQI shows them to be highly context-dependent, with values 

that depend strongly on multiple decisions made during the analysis process. These 

decisions include the choice of variables to be used for index calculations; the period for 

which the index is required; and the reference conditions used to define baseline values. 

Indices also tend to dampen rather than enhance variation among sites, because their 

calculation typically involves multiple levels of averaging (e.g., averages of medians). 

Consequently, they tend to perform poorly, relative to their individual components, when 

used to characterise national variability. 

Many of the problems associated with calculating indices and modelling temporal trends 

were caused by data limitations rather than the nature of the indices or trends themselves. 

Our calculations were often based on minimal subsets of variables and sites, due to the lack 

of consistent data for all required variables across sites, compromising our ability to 

characterise and analyse aquatic conditions at the national scale. If, in the future, water-
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quality indices can be calculated using multiple variables, consistently measured at sites that 

adequately span the entire range of river environments in New Zealand, we would almost 

certainly obtain more tractable results. A major goal of the NEMaR project is to ensure that 

better and more representative datasets will become available in the future. 
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1 Introduction 
As part of its National Environmental Reporting Programme, the New Zealand Ministry for 

the Environment (MfE) reports on the water quality and ecological state of rivers, and on 

temporal trends in river water quality and ecological conditions. In previous reports, the core 

variables used for assessments were dissolved and total nutrient concentrations (e.g., 

nitrate-nitrogen), indicator bacteria concentrations (e.g., Escherichia coli), physical attributes 

(e.g., water clarity), and metrics that describe aquatic invertebrate communities (e.g., 

Macroinvertebrate Community Index). 

In most of the previous MfE reports on state and trends in river water quality and ecological 

condition, the analyses were based on data from 77 monitoring sites in the National River 

Water Quality Network (NRWQN), or from the aggregated network of several hundred sites 

used for regional and district council monitoring programmes, plus the NRWQN sites (e.g., 

Ballantine et al. 2010, Ballantine & Davies-Colley 2010). Results of analyses of NRWQN 

sites alone are generally reported on a site-by-site basis, with some comparisons between 

paired sites intended to represent impaired and baseline conditions. Results of analyses of 

the aggregate monitoring network are generally extrapolated to the river segments in several 

environmental classes, with each class represented by multiple monitoring sites. Two 

classification systems have been used to classify river reaches for extrapolation: the River 

Environment Classification (REC) and the Freshwater Environments of New Zealand 

(FWENZ). Both systems group river reaches on the basis of environmental attributes such as 

climate, geology, and land-cover/land-use. The implicit assumption is made that water quality 

and ecological state/ trends will be similar among the river reaches in a given class; this 

assumption is the basis for extrapolation from monitoring sites.  

MfE’s National Environmental Monitoring and Reporting (NEMaR) project commenced in 

2011, with the goal of establishing consistent and dependable monitoring of New Zealand’s 

freshwater resources as a foundation for national reporting. NEMaR has several broad 

objectives, including trialling alternative approaches for river monitoring, data analysis, and 

reporting on state and trends. Within these objectives, several tasks were identified that are 

the topics of this report: 

4. Trial the use of water quality, macroinvertebrate and multi-metric indices as an 

alternative to the core variables listed above.  

5. Trial the use of statistical models to extrapolate water quality and ecological 

conditions and trends from monitoring sites to unmonitored reaches as an alternative 

to classification-based extrapolation; 

6. Trial a combination of Tasks 1 and 2, in which statistical models are used to 

extrapolate water quality, macroinvertebrate and multi-metric indices and trends in 

those indices to unmonitored reaches. 

 

The current report relates to Deliverables 1-6 of NEMaR Phase 3, as follows: 

1. Compile a national dataset of physical and chemical water quality variables (TN, 

NO3-N, NH4-N, TP, DRP, E. coli, clarity, temperature, DO, TSS, turbidity). 
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2. Produce random forest models of each physical and chemical water quality variable 

for all river reaches in New Zealand using the national dataset. 

3. Estimate values of two water quality indices for all river reaches in New Zealand 

using output from the random-forest models in Deliverable 2 and an existing dataset 

on physical-chemical modelled reference conditions. 

4. Estimate values of multi-metric (composite) indices for all river reaches in New 

Zealand using the output from Deliverable 3 and modelled current state and 

reference state macroinvertebrate data. 

5. Analyse trends in macroinvertebrate indices and extrapolate to all river reaches in 

New Zealand using random forest models. 

6. Analyse trends in physical and chemical water quality variables and extrapolate to all 

river reaches in New Zealand using random forest models. 
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2 Methods 

2.1 Compiling monitoring data 

The dataset used in this report consists of physical-chemical water quality and 

macroinvertebrate data from the regional council State of Environment (SoE) and National 

River Water Quality Network (NRWQN) programmes. The physical-chemical water quality 

variables are water clarity (CLAR), Escherichia coli concentration (ECOLI), nitrate-nitrogen 

concentration (NO3N1), ammoniacal nitrogen concentration (NH4N), total nitrogen 

concentration (TN), dissolved reactive phosphorus concentration (DRP), total phosphorus 

concentration (TP), temperature (TEMP), dissolved oxygen concentration (DO2) and percent 

saturation (DOSAT), suspended sediment (SS), and turbidity (TURB). The invertebrate 

variables are taxa lists and counts or coded-abundance classes for each taxon. The raw 

invertebrate data were post-processed to generate four variables: total number of taxa in a 

sample (TAXA), the number of taxa from the insect orders Ephemeroptera, Plecoptera and 

Trichoptera (EPTtaxa), the percentage of individuals in a sample from EPT taxa 

(%EPTabund), and the Semi-Quantitative Macroinvertebrate Community Index for hard-

bottom streams (SQMCI-hb). Details of invertebrate data post-processing are given below.  

In this report, we use “water quality” as a general term to refer to some or all of the preceding 

variables. Unless otherwise stated, we make no distinction between data collected at 

regional council sites and NRWQN sites, and we refer to the sites collectively as the “river 

monitoring network”. 

Most of the data used in this report were compiled in 2011-2012 for a previous NEMaR 

project on statistical power and representativeness in the monitoring network (Larned & 

Unwin 2012). The geographic locations and corresponding NZReach numbers of the 

monitoring sites used in the current study were determined and verified in the 2012 study. 

Our final dataset included sites on 1,021 reaches, comprising 789 water quality sites and 519 

invertebrate sites. Water quality sites tended to be on larger rivers than invertebrate sites, 

consistent with the tendency for invertebrate samples to be collected from streams small 

enough to be waded safely. 

In the dataset used for the 2012 study, the starting dates for all monitoring site records were 

1 January 2006 or earlier, and the ending dates ranged from June 2009 to February 2012. 

The range of ending dates poses some potential problems due to temporal variation in water 

quality. Further, we carried out temporal trend analyses in the current study and recent data 

were needed to ensure that the analyses corresponded to recent conditions. For these 

reasons we requested updated physical-chemical water quality data from five regional 

councils, to fill the most severe gaps in recent data. Each of the five regional councils 

provided updates, and the ending dates in the current dataset range from January 2011 to 

December 2012. Note that starting and ending dates can vary among sites within councils, 

and among variables within sites. 

                                                
1 Including NO2-N, usually a minimal component. 
2 TEMP, DO, and DOSAT were data taken as received, and were rarely consistently recorded at the same time of day. See 
Section 3.2.1 for further discussion of this problem. 
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2.2 Data processing 

Documentation of quality control standards vary widely among datasets provided by different 

councils. The initial data processing step used in the previous study (Larned & Unwin 2012) 

was repeated with the updated data to produce an internally consistent dataset for the 

current study. Briefly, we used quantile plots to visually (and subjectively) identify and 

remove gross outliers for each variable (e.g., CLAR = 735 m; DO = 34.5 mg/l; TEMP = 110 

°C); otherwise all updated data were loaded into the database as received. A total of 47 

records were identified as outliers, out of 2,240,524 individual measurements. Where 

necessary, individual variables were multiplied by an appropriate scale factor (e.g., 10, 1000) 

to ensure consistent units of measurement across all datasets. Records identified in the 

source dataset as being less than a specified detection limit (e.g., CLAR < 0.2) were 

replaced with a numerical value equal to half the detection limit. Records identified as 

exceeding some upper limit (e.g., ECOLI > 2400) were interpreted as equal to that limit. 

Almost all such records (761 of 772) were for either CLAR (394 records) or ECOLI (367 

records). These adjustments are unlikely to have affected our analyses of current state, 

which were based on medians for each variable, but could potentially have influenced our 

analysis of temporal trends. 

The updated data were also checked for multiple procedures used to measure single 

variables; alternative field and laboratory procedures for a given variable can be an 

extraneous source of data variability. We used the rules set out in the previous study (Larned 

& Unwin 2012) to pool data from comparable methods. Data measured using non-

comparable methods were omitted. 

The second data-processing step was to calculate four invertebrate indices: Ntaxa, EPTtaxa, 

SQMCI-hb and %EPTabund. These indices are widely used in New Zealand to summarise 

invertebrate data (Boothroyd & Stark 2000). The intent of the indices is to convey information 

about the integrated environmental conditions at monitoring sites, based on the assumption 

that invertebrate abundance, diversity and composition vary in response to multiple 

environmental variables. Some regional councils provide values for one or more of these 

indices as part of their SoE datasets. However, we calculated each index from raw data to 

ensure consistency in taxonomic resolution and MCI tolerance values. The range of 

taxonomic levels (from phylum to species) varies among regional councils, and it was 

necessary to standardise taxonomic levels to make sites comparable. For a standard taxa 

list, we used Table 1 of the User’s Guide to the Macroinvertebrate Community Index (Stark & 

Maxted 2007).  

We used the MCI tolerance scores for hard-bottom streams in all SQMCI calculations, 

regardless of the channel condition at the monitoring site. Soft-bottom SQMCI was not used 

for two reasons. First, splitting the sites into two groups based on substrate would have 

required two parallel analyses with fewer sites in each, which would have affected the 

representativeness and power of the statistical models. Second, there was insufficient 

information about site substrate in council-supplied datasets to consistently assign sites to 

hard- and soft-bottomed groups. 

The SQMCI was developed to meet the need for an invertebrate index that is more 

informative than the presence-absence-based MCI, and less costly than the quantitative 

QMCI, which requires full or fixed counts of samples (Stark 1998). The SQMCI uses five 
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abundance categories, with corresponding abundance ranges and coded abundances: rare 

(1–4 individuals; coded abundance = 1), common (5-19 individuals; coded abundance = 5), 

abundant (20-99 individuals; coded abundance = 20), very abundant (100-499 individuals; 

coded abundance = 100), very very abundant (≥500 individuals; coded abundance = 500). 

We used SQMCI-hb in lieu of QMCI-hb because there were too few samples in the 

invertebrate dataset consisting of full or fixed counts. Approximately 37% of the invertebrate 

records in our dataset consisted of coded abundances, with the remaining 63% based on full 

or fixed counts. For consistency, all full or fixed counts were converted to coded abundance, 

and SQMCI-hb was calculated for every sample using the equation  

SQMCI =∑
𝑛𝑖 × 𝑎𝑖
𝑁

𝑖=𝑆

𝑖=1

, 

where S is the total number of taxa in the sample, ni is the coded abundance for the ith taxon 

(using the abundance values listed above), ai is the tolerance value for the ith taxon, and N is 

the total of the coded abundances for the sample (Stark 1998).  

For both EPTtaxa and %EPTabund, algivorous caddisflies in the Family Hydroptilidae were 

excluded because these taxa often proliferate in algal blooms (Collier 2008). Calculations of 

%EPTabund were affected by the mixture of coded abundance and fixed or full count data, 

as discussed in the previous paragraph for SQMCI-hb. To be consistent, we converted all 

fixed or full counts to code abundances, then calculated %EPTabund as the sum of coded 

abundances for EPT taxa divided by the sum of coded abundances for all taxa. We used the 

same coded abundance values used for SQMCI-hb calculations: 1, 5, 20, 100, 500. 

We originally proposed to use a recent, multi-metric invertebrate index, Average Score Per 

Metric (ASPM), in addition to the four metrics listed above. ASPM was developed in New 

Zealand in response to concerns that single metrics such as EPTtaxa fail to capture 

community-level responses to multiple gradients in environmental conditions (Collier 2008, 

Stoddard et al. 2008). Like other multi-metric indices, the ASPM combines the standardised 

scores from several traditional indices to produce a single value for a sample. The first and 

only published case study of the ASPM used full-count invertebrate samples from the 

Environment Waikato river monitoring programme (Collier 2008). The use of ASPM with a 

new, national-scale dataset would require several steps: 1) calculating values for a suite of 

candidate metrics; 2) reducing the number of candidate metrics by eliminating highly 

correlated metrics; 3) standardising the values of the remaining metrics (e.g., by dividing by 

the maximum value in the dataset; and 4) identifying the optimum subset of the remaining 

metrics based on maximum discrimination between degraded environmental conditions (e.g., 

urban, pastoral) and reference conditions (e.g., native forest). This last step requires 

standardised values of candidate metrics from reference sites and impacted sites. After 

discussions with the ASPM developer, it was clear that using ASPM with a national-scale, 

multi-year dataset would require a substantial amount of redevelopment, for several reasons. 

The reduced number of candidate metrics and the optimum set of metrics may vary 

geographically and with changing spatial scales, and this will influence whether and how the 

national dataset is subdivided. The maximum values and reference sites or conditions used 

for standardisation and optimisation would need to be determined. Finally, it is not yet clear 

how to incorporate multiple years of data. For these reasons, ASPM was omitted as an 

invertebrate index. 
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2.3 Rules for including monitoring sites in models and trend 
analyses 

To identify sites suitable for our analyses, we applied date-filtering rules to the pooled data 

provided by councils and the NRWQN. Our aim was to maximise the number of sites for 

which sampling duration and frequency were sufficient to calculate robust medians and 

trends. Start and end dates varied among datasets, so our selection rules involved choosing 

a time interval long enough to yield sufficient data, short enough to capture as many sites as 

possible, and with an ending date that was relatively recent, but not so recent that many sites 

were excluded. For modelling current state for each variable, we restricted the analyses to 

data collected since 2006; the results were based on data collected over the most recent 5-6 

years of record. Water quality data were generally available up to at least December 2011 

and often extended into 2012, so we used all available data from 1 January 2006 for sites 

with records for at least 16 calendar quarters in at least 5 calendar years. Invertebrate data 

were rarely available beyond December 2010, and generally came from samples collected 

once per year. 

For modelling trends in water-quality variables and water-quality indices, we restricted our 

analyses to sites with data for at least 8 years since 2000. Trend analyses for specific data 

sets (e.g., NRWQN) have previously been conducted over periods as short as five years, but 

for the purposes of this report we opted for a longer period on the assumption that the 

resulting estimates of trend strength and direction would be more robust, and hence better 

suited to national-scale modelling. For sites monitored four times per year, we excluded 

those with data for less than 32 calendar quarters. For modelling trends in invertebrate 

community metrics calculated using data from annual invertebrate samples, we used all 

available data, but trialled eight different date-filtering rules to identify the most viable 

compromise between data currency, length of record, and goodness of fit. These were: 

i) At least 5 years from 1 January 2006; 

ii) At least 6 years from 1 January 2006; 

iii) At least 5 years from 1 January 2000; 

iv) At least 7 years from 1 January 2000; 

v) At least 10 years from 1 January 2000; 

vi) At least 10 years from 1 January 1995; 

vii) At least 15 years from 1 January 1995; 

viii) At least 20 years from 1 January 1990. 

2.4 Random forest models for predicting physical-chemical water 
quality and invertebrate community metrics 

We used random forest (RF) regression to model each water quality and invertebrate 

community variable using a set of 28 catchment and land-cover descriptors as predictor 

variables. These predictor variables were selected in a recent study of environmental factors 

influencing local water quality (Unwin et al. 2010). An RF model is an ensemble of individual 

classification and regression trees fitted via an algorithm that is free from distributional 

assumptions, and can automatically fit non-linear relationships and high order interactions. 

Each tree is grown with a bootstrap sample of the input data, using random subsets of the 

available predictor variables to grow the tree. Introducing these random components and 
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then averaging over the forest increases prediction accuracy while retaining many 

statistically desirable features. We refer readers to (Unwin et al. 2010) and references therein 

for further details about RF models. 

We modelled median values for each variable and NZReach, using raw (i.e., untransformed) 

data for TEMP, DO, DOSAT, and the four invertebrate community variables, and log-

transformed medians (i.e., the log of the median of the untransformed raw data) for all other 

variables (Figure 1). To examine the nature of the resulting models we calculated importance 

scores for all predictor variables, and examined and partial dependence plots (Breiman, 

2001; see also Unwin et al. 2010). Importance scores typically range from 10 or less for 

predictor variables of little or no importance to 30 or more for those of highest importance; 

scores of 20 or above can be taken to indicate strong relationships between predictor and 

response variables. Partial dependence plots show the marginal effect of a predictor variable 

on the response after accounting for the average effects of the other predictor variables in 

the model. These plots do not perfectly represent the effects of each variable, particularly 

when predictors are highly correlated or strongly interacting, but provide useful information 

for interpretation. We note that, because estimating a RF model involves randomly selecting 

observations and predictors throughout the fitting process, successive models fitted to the 

same dataset will exhibit subtle differences in structure and diagnostics such as total 

explained deviance, mean square error, partial dependence plots, and the rank order of 

predictors of similar importance.  

We used a jack-knife procedure to estimate confidence intervals for the each model. In this 

step we withheld one water quality site from the sites used to fit the RF models. The fitted 

model was then used to predict the variable of interest at the withheld site. Confidence 

intervals were then derived from these data using quantile regression. These confidence 

intervals will tend to overestimate confidence for rivers with combinations of catchment 

characteristics that are not well represented (cf. Snelder et al. 2009). We used normal Q-Q 

(quantile) plots to assess the distribution of residuals for each model, and to characterise the 

extent to which these deviate from normality. Further details are given in Appendix 2 of 

Unwin & Snelder (2010).  

All calculations were performed using Version 2.12.1 of the software environment R (R 

Development Core Team 2010) via the randomForest function library, using the 

predict.randomForest function to estimate variable levels for all REC segments throughout 

New Zealand.  

Model results are summarised in Appendices 1 (water quality variables), 2 (invertebrate 

community metrics) and 3 (water quality indicators), as a multi-panel figure for each variable 

showing model diagnostics (a scatterplot of the observed value vs. the corresponding jack-

knife prediction; a normal Q-Q plot for each model; and partial residual plots for the six 

leading predictors), together with mapped representations of model predictions for all river 

segments in New Zealand. 

2.5 Random forest models for predicting composite water quality 
indices 

We generated RF models for three types of river condition indices: the Canadian Council of 

Ministers for the Environment water quality index (CCME WQI), the Victorian Index of Stream 
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Conditions (VISC-WQI), and a composite indicator based on the CCME-WQI, VISC-WQI, 

and SQMCI-hb (Collier 2008). River condition indices are still under development, but are a 

potential method for concisely summarising river conditions spanning a range of metrics as 

single indices. In this section we briefly summarise the key features of the indices 

investigated to date; for further details see Ballantine (2012). We review the steps involved in 

calculating these indices for the present dataset, and identify some of the assumptions and 

caveats underlying the calculations. 
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Figure 1: Distribution histograms for the 12 water quality variables, 4 invertebrate community metrics, and 6 indices considered in this study.  

 



 

 

2.5.1 CCME-WQI 

The CCME-WQI is used both as a stand-alone water quality index, and as a sub-index for 

use in a composite river condition indicator (Collier 2008). Given a monitoring site where a 

fixed set of variables is measured consistently over a period of time, the CCME index is 

calculated as the average of three components relating to a pre-defined set of “objectives” or 

reference conditions for each variable: the proportion of variables which exceed these 

objectives (scope: F1); the proportion of samples in which these objectives are exceeded 

(frequency: F2); and the total amount by which these objectives are exceeded (amplitude: 

F3). The resulting index is scaled to yield a number between 0 (worst water quality) and 100 

(best water quality). 

The specific water quality variables, objectives, and time periods used for CCME-WQI 

calculations are not specified a priori. The NEMaR expert panel on indicators recommended 

a core set of seven variables: CLAR, ECOLI, NO3N, NH4N, TN, DRP and TP, at least four of 

which are required to calculate a valid index. Objectives were based on reference conditions 

for all core variables (McDowell et al. 2013), supplied by MfE. These reference conditions 

were specified separately for all significant REC climate/source-of-flow classes, so that 

objectives for each NZReach were specific to the REC class associated with that reach. 

Selecting core variables for the current study required us to make a compromise between 

robustness and coverage in environmental space. Using all seven core variables would 

maximise robustness, but sufficient data for the seven variables were only available for 116 

of 784 reaches, over half of which were in one region. After inspecting the database we 

identified a subset of five variables (ECOLI, NH4N, NO3N, DRP, TP) for which there were 

sufficient data for 398 reaches, and a subset of four variables (ECOLI, NO3N, DRP, TP) for 

which there were sufficient data for 525 reaches. We chose the latter set, on the assumption 

that, for RF modelling, maximising geographical coverage and minimising gaps in 

environmental gradients was more important than maximising index robustness. 

The freedom to define the time periods variables used to calculate the CCME-WQI means 

that the resulting indices for any given dataset are context-dependent. This feature has some 

potentially undesirable effects. For example, the F1 component represents the percentage of 

variables that exceed their objectives at least once during the time period under 

consideration; for variables that exceed their threshold values only rarely, F1 will tend to 

increase with time regardless of any changes in water quality. The F3 component depends 

on the amount by which each threshold is exceeded, expressed as a ratio, and is sensitive 

both to outliers and to variation in reporting standards between regions. In the present 

dataset this variation was particularly noticeable for ECOLI, for which upper reporting limits 

varied from 2,400 MPN/100 ml in some regions to > 100,000 MPN/100 ml in others. 

CCME-WQI scores for the 525 sites with sufficient data were calculated as per Ballantine 

(2012), and then used as dependent variables in RF models based on the same predictor set 

as for the water quality and invertebrate community variables (Section 2.4). Index scores 

were not normally distributed (Figure 1), but we did not log-transform them as 5% (26 of 525) 

values were zero. The distribution of index scores is also strongly influenced by the choice of 

reference conditions, and could easily (and more naturally) be normalised by adjusting the 

reference scores  (see Section 3.3.1). 
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2.6  VISC WQI 

The VISC WQI as originally developed was based on four variables (TP, TURB, pH, 

conductivity), which were considered relevant for reporting water quality issues in rivers in 

Victoria, Australia. For this study, we adopted the version developed for the Hawkes Bay and 

Greater Wellington Regional Councils, which was based on DRP, NO3N, CLAR, and ECOLI 

by Ballantine (2012). Site availability for the present dataset was limited by the lack of CLAR 

for several regions (e.g., Auckland, Canterbury, Otago), but viable index calculations were 

possible for a total of 401 sites. Other permutations of variables may have increased the 

number of available sites, but investigating the properties of the resulting indices was beyond 

the scope of this study. 

The VISC-WQI is based on percentiles, via a three-step calculation in which medians for 

each variable are converted to percentiles across all sites within each REC climate/source-

of-flow class, the resulting percentiles are converted into levels spanning successive 

percentile bands (0-20%, 20-40% etc.), and the resulting levels are averaged to yield an 

index on a scale from 0-100. As with the CCME-WQI the resulting index scores are context-

dependent, in that the score for a given site depends on the characteristics of other sites 

within the same REC class, but – because they are based on site medians – were much less 

sensitive to outliers than the CCME-WQI. The resulting scores were approximately normally 

distributed (Figure 1), and were used as dependent variables in RF models as for the CCME-

WQI. 

2.7 Composite index 

A composite index for conveying information about environmental conditions combines the 

standardised values of multiple indices (referred to here as sub-indices). The ASPM 

described in Section 2.2 is an example of a composite index, as it uses several invertebrate 

indices as sub-indices. Composite indices are intended to integrate information about 

multiple aspects of environmental conditions into single values. 

We trialled several composite indices in this study, based on combinations of two water 

quality sub-indices, VISC-WQI and CCME-WQI, and one invertebrate sub-index. We 

originally planned to use ASPM as the invertebrate sub-index, but after evaluating ASPM 

(see Section 2.2) we used SQMCI-hb instead. SQMIC-hb scores were standardised by 

converting scores to percentiles and expressing the results on a scale from 0 to 100. 

The number of sites suitable for calculating composite index scores were limited by the 

relatively small number of sites that were regularly sampled for both water quality and 

invertebrates (see Section 2.1). We identified 153 suitable sites, scattered thinly throughout 

most of New Zealand with clusters of sites in the lower North Island and Southland.  

We trialled four composite indices; three based on VISC-WQI, CCME-WQI and SQMIC-hb, 

and one based on VISC-WQI and CCME-WQI alone (see Table 5, p. 24 for details). The 

three composite indices based on VISC-WQI, CCME-WQI and SQMIC-hb were denoted 

CI3mean, CI3median and CI3min; these names refer to the use of the mean, median and 

minimum value of the three sub-indices as the composite indicator score. The composite 

index based on VISC-WQI and CCME-WQI alone was denoted CI2mean, as the composite 

indicator scores were the means of the two sub-indices. Dropping the SQMCI-hb sub-index 

in CI2mean increased the number of suitable sites from 153 to 316, at the expense of 
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information about invertebrate communities. In addition to CI2 based on VISC-WQI and 

CCME-WQI, there were two other possible combinations of two sub-indices, SQMCI-hb with 

VISC-WQI, for which there were 215 suitable sites, and SQMCI-hb with CCME-WQI, for 

which there were 177 suitable sites. Since RF model performance depended on maximising 

the number of sites, only CI2 based on VISC-WQI and CCME-WQI was calculated and 

modelled. The untransformed CI3mean, CI3median and CI2mean scores were normally 

distributed, but CI3min scores were left-skewed (Figure 1). All four composite indices were 

used as dependent variables in random forest models. 

2.8 Temporal trends in macroinvertebrate community indices 

We used correlation analysis and linear regression to estimate the magnitude, direction, and 

significance of trends in the four macroinvertebrate community indices (Ntaxa, EPTtaxa, 

SQMCI-hb and %EPTabund). This contrasts with our analyses for trends in water quality 

variables (Section 2.9), which were based on seasonally adjusted non-parametric Mann-

Kendall tests (cf., Ballantine et al. 2010) to allow for seasonal (i.e., monthly or quarterly) 

signals in the underlying time series, and departures from normality in the underlying 

distributions. Neither of these considerations were relevant for the invertebrate data, which 

were approximately normally distributed (Figure 1), and did not require seasonal adjustment 

because the data were from annual samples. 

For each site and each invertebrate index, we regressed the observed values against date 

(measured in decimal years), and divided the slope of the fitted line by the median observed 

value for all sites to express the trend as percentage annual change. Associated diagnostics 

were the attained significance (P value) and 95% confidence intervals for the corresponding 

Pearson correlation coefficient, with trends being assessed as significant only if the 

correlation coefficient differed significantly (i.e., P < 0.05) from zero. Even in the absence of 

any significant correlations, approximately 5% of fitted trends will fall below P = 0.05 purely 

by chance, so our results may overestimate the number of correlations we report as 

“significant”. 

We then fitted RF models to the estimated trends in invertebrate indices using the procedure 

summarised in Section 2.4. The utility of each model was assessed on the basis of the 

percentage of explained variance and the associated diagnostic plots. To characterise model 

performance in relation to the lengths of time-series, we used various combinations of 

starting year and time-series lengths in the RF models, then focused our assessments on the 

datasets we judged to be most robust. 

2.9 Temporal trends in water quality variables 

We used the non-parametric Seasonal Kendall Sen Slope Estimator (SKSE; Sen 1968) to 

estimate the magnitude and direction of temporal trends for each site and water quality 

variable. The trend values were normalised by dividing by the raw data median to give the 

relative SKSE (RSKSE), allowing for direct comparison between sites measured as per cent 

change per year. RSKSE calculations were accompanied by a Seasonal Kendall test of the 

null hypothesis that there is no monotonic trend. If the associated P-value is “small” (i.e. P < 

0.05), the null hypothesis can be rejected (i.e., the observed trend or any larger trend, either 

upwards or downwards, is unlikely to have arisen by chance). As with our calculations of 

trends in macroinvertebrate indices, our assessments of significance levels do not account 

for analyses of multiple sites, and may thus overestimate the number of significant trends. 
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The raw water quality data were not flow-adjusted prior to trend analyses, as they were in 

some previous analyses (e.g., Ballantine et al. 2010). The decision to omit flow-adjustments 

was made following discussions between NIWA and MfE, which considered (a) the 

resources needed to obtain updated flow data to match the latest water quality data; (b) the 

need to predict flows at water quality sites that are not associated with flow-gauging sites; 

and (c) the potential for flow-adjustment to introduce additional noise into the raw data (c.f., 

Ballantine et al. 2010). In the absence of flow-adjustment, there is a risk that some trend 

estimates are due to flow variability alone. However, the effects of flow-dependent trends on 

RF models are likely to be minimal, possibly causing some affected sites to appear as 

outliers but having little effect on the overall fit. 

We estimated trends for two parallel datasets, based on monthly and quarterly data, 

respectively. Monthly analyses were possible only for a subset of regions with monthly 

sampling programmes. Monthly data provided more robust and powerful trend analyses than 

quarterly data, but there were more sites and greater geographical coverage when quarterly 

data were used. Quarterly data were available from all regions; monthly (and occasionally 

bimonthly) datasets from some regions were converted to quarterly datasets by calculating 

quarterly medians.  

To categorise trends of differing strength, trends for each water-quality variable into grouped 

into one of three categories. These categories are intended to differentiate between trends 

which are statistically significant (P < 0.05) but not necessarily meaningful in a environmental 

management context, and those which are both significant and meaningful (c.f., Ballantine et 

al. 2010, Davies-Colley & Nagels 2008). The categories are: 

i.  not statistically significant (P ≥ 0.05), i.e., the null hypothesis for the Seasonal Kendall 

test was not rejected; 

ii. statistically significant but not meaningful (P < 0.05, RSKSE < 1%), i.e., the null 

hypothesis for the Seasonal Kendall test was rejected, but the trend is unlikely to be 

meaningful in an environmental-management context; 

iii. statistically significant and meaningful (P < 0.05, RSKSE ≥ 1%), i.e., the null hypothesis 

for the Seasonal Kendall test was rejected, and the trend is potentially meaningful in a 

management context. 

We fitted RF models to the estimated trends using the same procedures and diagnostic 

methods as for all other variables. As with the models for trends in invertebrate community 

indices, detailed results are presented only for the most robust. 
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3 Results 

3.1 Deliverable 1: Data compilation 

The water quality and macroinvertebrate community data on which this report is based are 

contained in two independent but closely related MS-Access databases, each of which is, in 

turn, based on parent databases compiled for one or more previous projects. Progenitor 

databases for water quality were compiled in 2009 (Unwin et al. 2010) and 2011 (Larned & 

Unwin 2012). The macroinvertebrate database is an updated version of a database 

developed for a Department of Conservation TFBIS project, and subsequently used as the 

basis for a MfE-funded compilation of macroinvertebrate data at a nationally consistent level 

of taxonomic resolution. Both databases have structures in common, including tables of all 

sampling sites in each region and the results (water quality measurements or invertebrate 

counts) for each sampling date. Differences mostly relate to the ancillary information needed 

to establish national consistency, such as lookup tables allowing individual variables to be 

uniformly interpreted (for water quality), or to associate individual taxa with measures such 

as MCI score and EPT status (for macroinvertebrates). In addition, we accessed data from 

the REC, FWENZ, and other related databases, copies of which are held by NIWA, to obtain 

NZReach-level data as necessary for the RF models. 

Including data for sites and time periods not used in this study, the pooled water quality 

database currently holds 2,240,524 individual records, representing 692 measured variables 

at 1154 sites in 16 regions. After discarding variables provided by some regions but 

irrelevant to the current study (e.g., heavy metals, pH), and applying our site and date 

filtering criteria (Section 2.3), our final working datasets consisted of 681,948 measurements 

(for the 2000-2012 trend analyses), and 399,585 measurements (for the 2006-2012 RF 

analyses). Including data for sites and time periods not used in this study, the 

macroinvertebrate database holds 226,787 taxonomic occurrence records, representing 444 

distinct taxa at 1,501 sites in 16 regions. 

The databases are essentially data repositories, and no attempt has been made to provide a 

user interface beyond the standard MS-Access table and query design tools. Standard 

queries for exporting raw water quality and invertebrate community data as Excel or flat text 

files are available, but users with more advanced data extraction needs should be 

conversant with the basics of query design. 

With very few exceptions, data have been retained exactly as received from the original 

source (i.e., regional council or NRWQN). Gross outliers (e.g., CLAR = 82.2 m, TEMP = 

204 °C) have been flagged so that they can be discarded at query time, but in borderline 

cases (e.g., CLAR = 20-30 m, TEMP ~ 32 °C) we have opted to retain the data.  

We have eliminated errors in cross-referencing site locations to the REC, and all sites should 

be matched to the correct NZReach. The current databases include recent updates to the 

master site list for macroinvertebrate samples, and are believed to be error-free. As with the 

raw sample data, however, developing a fully definitive site list will require consultation with 

regional council staff who are familiar with their sites, particularly with regard to recent shifts 

in location. 
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3.2 Deliverable 2. Random forest models for predicting physical-
chemical water quality 

Diagnostic plots for all models include quantile regression and quantile plots (Appendix 1). 

These diagnostics show the extent to which the residuals deviate from normality, and help to 

assess model performance. The most extreme residuals for all models were more dispersed 

(at one or both ends of their range) than if they were distributed normally, suggesting a 

general tendency for the models to over-predict sites with low values for each variable, and 

under-predict sites with the highest values. Partial dependence plots for the leading six 

predictors for each model are also shown on a common vertical scale, so that responses for 

each predictor can be compared directly. 

RF model predictions for all NZReaches are included in Appendix 1 as a series of maps, 

colour coded so that predicted water quality is highest at the indigo/blue end of the scale. 

High water quality is presumed to correspond to low values of TEMP, TURB, ECOLI, TSS 

and nutrient concentrations, and high values of DO and DOSAT. The maps also show the 

distribution of monitoring sites on which each RF model was based, thereby indicating gaps 

in geographical coverage. Predictions for regions or REC climate/land-cover classes which 

are poorly represented in the raw data are potentially less reliable than those for regions 

which are well-represented. 

3.2.1 Model performance 

Model performance (indicated by percent explained variance) varied widely among variables, 

but the results were comparable to the preceding RF modelling study (Unwin et al. 2010) for 

variables common to both studies (Table 1). The strongest improvement on the 2010 study 

was for TSS: 39.7% of variance was explained in the previous study, and 50.9% was 

explained in the current study. This improvement is largely due to an increase in the number 

of sites with suitable data (from 225 sites in the previous study to 466 in the current study), 

with a corresponding increase in geographical coverage. The most notable decline in model 

performance was for TN (from 77.8% of variance explained in the previous study to 73.8% in 

the current study). This small decline was probably due to the removal of over 200 sites in 

the current study, after we became aware of inconsistencies in measurement procedures 

(see Larned & Unwin 2012 for a full discussion of this issue). 

Of the four new variables in this study, TURB and TEMP were reasonably well modelled 

(66.7% and 68.8% explained variance, respectively), but models for DO and DOSAT (i.e., 

DO as % saturation) were weaker, with DOSAT (43.2% explained variance) the most poorly 

modelled of the 12 water quality variables. Residuals for both the DO and DOSAT models 

were strongly over-dispersed (Appendix 1), indicating that the respective models were poor 

at predicting extreme values. A possible confounding factor for TEMP, and hence for DO and 

DOSAT (which are temperature-dependent), is the time of day at which field measurements 

were made. Time of day varies arbitrarily among samples and can also vary systematically 

between sites. For example, the NRWQN includes two sites on the Waimakariri River near 

Christchurch, with the upstream site (Waimakariri Gorge, 60 km above the mouth) generally 

sampled between 07:00 and 09:00, and the lower site (6 km above the mouth) generally 

sampled between 13:00 and 16:00. Measured spot temperatures at the downstream site are, 

on average, 2-6 oC warmer than at the upstream site, with the mean difference over the five 
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months from October to February consistently exceeding 5 °C. The extent to which this 

difference reflects time of measurement rather than longitudinal warming is unknown. 

Table 1: Diagnostic statistics and random forest model performance for each water quality 
variable.   Figures in parentheses refer to the corresponding values for the 2010 random forest 
models. 

Variable Nsites Median Mean ±1 SD % variance explained 

CLAR 507 (382) 1.60 1.61 0.74 - 3.51 67.9 (62.2) 

TSS 466 (225) 3.00 2.85 1.12 - 7.30 50.9 (39.7) 

TURB 714 (  -  ) 2.00 1.97 0.62 - 6.29 66.7 (  –  ) 

TEMP 748 (  -  ) 12.60 12.57 10.10 - 15.05 68.8 (  –  ) 

DO 713 (  -  ) 10.40 10.20 9.00 - 11.41 55.9 (  –  ) 

DOSAT 666 (  -  ) 98.1 95.9 85.9 - 105.8 43.2 (  –  ) 

ECOLI 738 (396) 98.4 81.7 17.1 - 390.0 72.3 (69.8) 

NH4N 459 (553) 7.50 10.15 3.45 - 29.8 56.9 (57.0) 

NO3N 682 (552) 251.0 201.8 37.6 – 1084 65.9 (68.6) 

TN 344 (526) 382.5 367.9 102.1 - 1325 73.8 (77.8) 

DRP 722 (565) 9.00 8.91 3.05 - 26.1 56.6 (58.9) 

TP 593 (528) 25.00 22.45 8.06 - 62.5 71.8 (72.4) 

3.2.2 Predictor variables 

Averaging across all water quality variables, the predictor variables with the highest 

importance scores were % heavy pastoral (average importance score 21.2), catchment 

elevation (average importance score 17.8), mean slope (average importance score 17.2), 

minimum annual air temperature (average importance score 15.3), and maximum annual air 

temperature (average importance score 15.2) (Table 2). The high-scoring predictors for each 

water quality variable were the same as those identified in the previous RF model study 

(Unwin et al. 2010), with minor changes in order. Given that predictor order for the same 

dataset can vary subtly each time the model is estimated, due to the random component built 

into the RF model fitting algorithm, such variation is to be expected. Examples of variables 

for which the leading predictors were identical in the two studies include ECOLI (catchment 

elevation, %heavy pastoral land-cover, rain variability); NH4N (catchment elevation, %heavy 

pastoral land-cover); and TP (mean catchment slope, % indigenous forest).  

Model fits for CLAR, TSS, and TURB were similar, as expected, given that all three variables 

are related to water clarity and sediment load. CLAR and TSS were also modelled in 2010, 

but datasets for both variables were sparse and geographically limited in the 2010 study. The 

new models for both variables benefitted from the inclusion of additional sites, although the 

distributions of sites remain patchy. This patchiness reflects the tendency of some councils to 

measure only one of these two variables (e.g., absence of CLAR in Canterbury and Otago, 

absence of TSS in Waikato, Tasman, and West Coast). TURB was not modelled in 2010, but 

is widely available throughout New Zealand and was included in the current study. All three 

variables show strong dependences on the percent of catchment land-cover classified as 

heavy pastoral, rain variability, and (particularly for TURB) other flow- and climate-related 

variables such as temperature, mean flow, and annual rain days (Table 2). 
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Table 2: Importance scores1 from RF models for predictors of water quality variables. The 

percent of variability in each variable explained by the RF model is in the top row, in parentheses.
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Reach elevation 18.6 4.4 11.9 20.5 9.5 7.9 15.2 8.7 10.9 10.3 10.2 8.7 

Catchment elevation 17.7 10.7 17.9 10.3 14.9 20.0 33.4 26.7 16.6 16.9 14.8 13.6 

Mean slope 16.7 18.1 13.1 12.1 16.2 15.4 19.5 16.8 18.5 12.3 19.6 28.5 

Catchment area 13.9 16.3 16.5 16.7 9.7 7.7 12.4 9.2 10.5 7.1 12.2 12.5 

Lake index 7.0 4.2 10.1 5.6 6.7 3.2 15.1 2.6 16.5 2.3 10.8 6.1 

Mean flow 16.1 20.3 17.2 15.1 9.6 7.7 10.9 6.3 9.9 6.0 12.4 12.1 

Rain variability 20.6 20.3 27.1 14.4 17.4 10.6 27.0 9.8 14.0 8.9 14.4 19.8 

Min temperature 12.7 12.5 24.9 20.1 27.3 10.8 14.7 7.9 14.0 10.8 12.1 15.7 

Max temperature 15.7 17.2 26.0 13.9 18.3 8.4 14.4 8.1 14.4 9.5 16.4 19.5 

Rain days > 10 13.7 15.4 17.7 12.3 13.8 14.2 14.1 8.9 14.9 6.9 17.4 11.7 

Rain days > 50 17.9 12.5 22.9 15.6 14.3 17.3 14.0 10.1 12.0 8.5 17.9 16.7 

Rain days > 200 19.1 10.8 21.1 16.5 10.2 12.7 12.9 8.8 11.6 8.5 12.8 16.9 

Evapotranspiration 10.2 13.5 17.2 13.9 9.8 8.1 14.8 6.9 11.3 8.9 14.2 13.6 

%alluvium 16.2 12.5 14.7 8.2 10.8 8.9 15.9 8.9 15.7 14.7 11.0 14.0 

%glacial 2.2 2.6 2.8 -1.8 1.9 -1.1 0.7 0.9 3.1 1.0 4.2 0.1 

%peat 15.7 2.6 10.5 3.6 8.9 13.3 7.1 7.3 3.0 5.5 5.6 10.9 

Calcium 7.6 8.4 8.2 9.0 10.2 5.1 9.5 6.3 9.8 6.2 12.5 14.3 

Hardness 12.2 14.2 16.0 6.8 9.1 8.1 12.7 9.7 11.8 8.4 17.2 20.0 

Particle size 12.9 11.2 11.6 8.9 21.7 12.0 12.3 6.8 14.5 7.6 26.9 19.3 

Phosphorous 12.5 10.7 12.9 8.8 11.7 11.6 15.9 7.6 14.7 11.9 14.6 13.7 

%bare 12.9 13.7 14.0 12.3 8.6 6.7 12.9 6.8 8.6 6.8 18.4 14.7 

%exotic forest 5.8 10.1 10.9 7.7 8.2 13.1 13.8 5.3 18.4 8.9 9.7 7.9 

%indigenous forest 13.7 10.6 13.6 9.3 7.0 8.8 14.4 9.8 19.1 11.8 14.1 22.2 

%pastoral heavy 24.5 20.3 21.6 15.7 10.4 9.3 34.5 19.9 34.5 30.2 15.2 17.8 

%pastoral light 6.2 9.9 14.7 6.8 7.4 5.5 11.5 6.4 10.2 7.4 13.7 14.9 

%scrub 5.6 7.6 9.4 8.8 7.6 8.5 12.4 5.5 18.0 9.7 10.8 6.4 

%urban 8.2 4.7 9.7 11.0 0.2 2.0 15.3 14.8 18.3 14.0 12.7 9.3 

%wetland 10.2 6.4 15.7 5.5 7.6 6.8 6.1 4.2 9.6 6.9 10.6 7.8 

1 Importance score (IS) is highlighted so as to identify IS ≥ 30.0 (pink shading); 20 ≤ IS < 30 (bold red); 15 ≤ IS < 
20 (orange); and 10 ≤ IS < 15 (blue). See Appendix 1 for a more detailed description and interpretation of each 
predictor. Scores are indicative only, particularly for lower ranked predictors in weak models for which predictor 
order can vary each time the model is fitted due to the random component built into the RF model process. 
2 Columns are ordered so as to facilitate comparisons between variables representing physical parameters, 
bacteria counts, and nutrients.  
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The leading predictor variables for TEMP were reach elevation and minimum annual 

temperature, although partial dependence for plots suggest that minimum annual air 

temperature was by far the more important of the two (Appendix 1). Minimum annual air 

temperature was also the most important predictor for DO, although for DOSAT the leading 

predictor was mean catchment elevation. Predictor variables related to land-cover were only 

weakly significant for TEMP, and even less so for DO and DOSAT. As noted in Section 3.2.1, 

Intrinsic diurnal and season variation in TEMP, DO and DOSAT may obscure the effects of 

land-cover and other geographic factors. 

3.2.3 Model predictions 

Mapped predictions of physical and chemical water quality variables for all REC river 

segments were always plausible, and often compelling (Appendix 1). All models were 

broadly consistent with mesoscale New Zealand geography, reflecting features such as the 

axial mountain ranges in both islands, and latitudinal/longitudinal variation in climate. In 

practice, however, we expect the most robust predictions to emerge from models which are 

both well-fitted (i.e., have a high percentage of explained variance), and have no major 

geographical gaps in the underlying distribution of sites. Variables for which the model meets 

both these criteria are limited to TURB, TEMP, ECOLI, and NO3N. For the other variables, 

prediction accuracy is potentially constrained by limited number and geographical distribution 

of sites (e.g., CLAR, TN), low explained variance (e.g., DRP), or both (e.g., TSS, NH4N). 

3.2.4 Random forest models for invertebrate community metrics 

We generated RF models for the four macroinvertebrate community variables (NTaxa, 

SQMCI-hb, EPTtaxa, %EPTabund) using the same procedures as for the water quality 

models. Results and diagnostic plots are shown for all four models (Appendix 2), together 

with maps of predicted values for each NZReach. Briefly, all models appeared to yield 

credible fits to the observed data, with little if any tendency towards over- or under-prediction 

(Table 3). The most successful model (explained variance 71.5%) was for SQMCI-hb, 

followed by EPTtaxa (explained variance 64.6%). Leading predictors shared by at least three 

models were the percentage of indigenous forest cover, catchment and/or site elevation, and 

the percentage of heavy pastoral land-cover (Table 4). 

Table 3: Diagnostic statistics and random forest model performance for four 
macroinvertebrate community variables.  

Variable Nsites Median Mean SD % variance explained 

NTaxa 519 17 17.1 5.2 54.6 

SQMCI-hb 519 105 105.2 18.9 71.5 

EPTtaxa 519 7 7.4 4.1 64.6 

%EPTabund 519 45.0% 42.7% 27.1% 55.5 
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Table 4: Importance scores from RF models for predictors of invertebrate community 
metrics and water quality indices. The percent of variability in each variable explained by the RF 
model is in the top row, in parentheses. See Table 2 for formatting conventions used to indicate 
relative importance.
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Reach elevation 16.7 21.5 21.5 22.6 6.6 6.1 -1.4 15.5 8.7 8.6 

Catchment elevation 13.2 22.4 18.0 22.0 12.4 7.7 8.7 14.3 4.2 12.7 

Mean slope 16.0 18.1 11.9 14.0 21.9 14.1 14.9 12.9 7.1 8.7 

Catchment area 10.3 14.6 12.1 12.0 7.0 7.9 4.9 6.5 2.5 9.7 

Lake index 2.5 5.9 1.1 -0.8 8.5 3.5 3.2 2.0 3.0 4.0 

Mean flow 11.5 11.2 10.5 11.2 7.3 8.4 5.0 6.2 2.3 10.7 

Rain variability 10.3 11.4 9.8 10.8 13.4 13.2 6.4 7.1 5.3 6.4 

Min temperature 11.4 13.8 12.2 15.4 9.4 9.7 2.2 6.6 5.3 9.9 

Max temperature 14.2 12.1 11.2 13.2 12.4 9.0 3.7 5.1 6.1 11.5 

Rain days > 10 17.7 12.2 15.0 10.7 8.6 8.4 1.4 4.9 1.3 9.2 

Rain days > 50 14.7 12.2 16.2 10.6 13.8 8.1 5.0 3.1 4.3 11.3 

Rain days > 200 16.1 10.3 13.1 6.6 14.4 10.8 8.2 5.3 7.8 9.6 

Evapotranspiration 9.9 15.2 10.7 11.8 9.8 10.4 0.2 1.4 7.1 6.3 

%alluvium 20.7 13.0 12.7 8.6 9.5 8.0 3.2 4.6 2.3 5.3 

%glacial 4.4 2.5 5.8 -0.8 -2.3 2.6 1.7 2.8 1.7 0.7 

%peat 5.1 4.7 5.2 0.5 3.0 3.0 0.6 6.6 0.9 5.2 

Calcium 16.2 16.0 9.9 13.9 7.8 9.4 5.3 2.3 4.5 7.7 

Hardness 11.7 13.6 10.7 12.4 12.2 11.2 9.5 10.1 8.4 4.8 

Particle size 11.8 12.1 13.0 11.9 21.4 21.2 9.7 5.5 18.1 12.5 

Phosphorous 18.6 10.9 14.2 11.7 10.3 6.9 4.1 5.4 4.4 7.9 

%bare 8.8 7.3 9.6 3.2 8.2 10.0 9.1 5.4 3.5 6.8 

%exotic forest 7.9 11.1 8.7 11.1 7.4 6.2 1.8 3.6 4.1 6.2 

%indigenous forest 16.2 30.4 26.3 24.7 10.9 14.5 9.5 16.3 6.1 6.4 

%pastoral heavy 12.5 23.7 19.9 20.7 22.6 20.9 9.7 12.9 6.3 9.5 

%pastoral light 11.1 5.5 9.7 6.8 13.0 4.0 2.5 4.9 3.2 9.4 

%scrub 10.5 10.3 9.3 8.8 11.5 13.1 3.0 2.7 5.1 11.5 

%urban 13.0 23.1 20.4 18.1 11.7 18.9 5.7 4.2 11.6 8.3 

%wetland 7.0 4.0 3.6 5.6 5.6 4.1 3.5 4.7 2.5 5.4 
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3.3 Deliverable 3. Random forest model for predicting CCME-WQI 
and VISC-WQI scores 

3.3.1 Raw CCME index scores 

The raw CCME-WQI scores for the 525 sites with suitable data were generally low, and were 

not evenly distributed across the water quality categories associated with this index: 

excellent, good, fair, marginal, poor (Ballantine 2012). Most sites had CCME-WQI scores 

below 45 (categorised as “poor”). Only ten sites attained scores of 45-64 (categorised as 

“marginal”), and only two (Waikato River at Reids Farm, 2 km above Huka Falls; Monowai 

River below Lake Monowai) scored over 65 (categorised as “fair”). High-profile and highly 

regarded rivers rated as “poor” included the Clutha River at Luggate; Hurunui River at 

Mandamus; Waitaki River at Kurow; Ruamahanga River at McLays (2 km upstream of Mt 

Bruce); Ngaruroro River at Kuripapango; Akatarawa River; Oreti River at Three Kings; and 

Buller River at Longford. 

The CCME-WQI categories are arbitrary, and could be altered so as to be more relevant to 

New Zealand conditions (Ballantine 2012). In our view, however, a more fundamental 

problem is that – at least for the current dataset – the index appears to be naturally and 

strongly skewed towards very conservative values. Mean and median index values for the 

525 available sites were 13.8, and 10.1, respectively, and 78 sites (15% of the total) scored 

below 1. Given that the index is defined to range from 0 to 100, with scores of 95-100 

categorised as “close to pristine”, the skewed distribution cannot be remedied simply by 

rescaling or transforming the data. 

Several factors may have contributed to this result. Some tendency towards low scores is to 

be expected, given that regional councils prioritise sites where water quality is likely to be 

compromised (Ballantine 2012). As noted earlier, we would also expect index scores to vary 

depending on the choice of core variables, as well as the time period over which 

exceedances are tallied. However, the most important factor influencing CCME-WQI scores 

is the choice of reference conditions used to define exceedances for each variable, which 

directly affect all three components (F1, F2, F3) on which the index is based. The reference 

values used for this study were based on median reference conditions estimated for each 

nutrient and ECOLI in the absence of agricultural landcover (McDowell et al. 2013). These 

median reference values are stringent because, by definition, exceedances for each variable 

are expected to occur 50% of the time. More lenient reference values would increase the 

CCME-WQI scores at most sites. 

3.3.2 Model performance and predictor variables 

RF model performance for the CCME index was fair but not exceptional, with the percentage 

of explained variance (57.5%; Table 4) similar to that for some individual water quality 

variables (e.g., NH4N, DRP, and %EPTabund) but less than the percentage explained in the 

best models (e.g., ECOLI, TP). The corresponding Q-Q plot (Appendix 3) suggests that the 

RF model performed well for predicting the lowest CCME-WQI scores, but systematically 

(and significantly) under-predicted scores at the upper end of the observed range. Sites with 

sufficient data for CCME-WQI calculations were distributed across much of New Zealand, but 

were sparse along the West Coast, in Hawkes Bay and East Cape, and in Taranaki. 
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Leading predictors and response curves for the CCME index directly reflected those of the 

component variables, with importance scores for the top three predictor variables 

(percentage of heavy pastoral land-cover, mean catchment slope, and mean catchment 

particle size (a geological surrogate for substrate size) ranging from 21.4 - 22.6 (Appendix 3). 

These results are consistent with those for the individual components, with % heavy pastoral 

cover the dominant predictor for ECOLI and NO3N, mean slope important for all components 

and the dominant predictor for TP, and particle size the dominant predictor for DRP. More 

generally, we would expect the best predictors to be almost completely determined by the 

water quality variables used in CCME-WQI, so that – assuming all variables were available 

at all sites – parallel models of indices based on different subsets of variables would not 

necessarily share the same predictors.  

3.3.3 Model predictions 

Predicted CCME-WQI scores for all NZReaches were uniformly low, with 99.7% of reaches 

predicted to have scores below 45 (i.e., category “poor”), and only 26 reaches (0.004%) 

exceeding 50. The maximum predicted score was 53.3, with mean and median predicted 

scores of 22.8 and 21.9, respectively. When presented in map form (Appendix 3) the 

predictions appear to divide New Zealand into two regions corresponding to lowlands and 

uplands, with most lowland reaches predicted to have indices below 15-20, and most upland 

reaches predicted to score above 25.  

3.3.4 VISC-WQI index 

We fitted a RF model to the VISC-WQI indices for all available sites, and predicted VISC-

WQI values for all NZReaches; diagnostic plots and mapped predictions are in Appendix 3. 

The RF model fit was comparable to that for the CCME-WQI, with 52.3% percentage 

explained variance. However, VISC-WQI values (mean = 61.8, median = 63.2) were higher 

than for the CCME-WQI (mean = 13.8, median = 10.1), and spanned a broader range 

(standard deviation = 26.4; CCME standard deviation = 13.2). The corresponding Q-Q plot 

also suggest a markedly better fit than for the CCME index, with little if any difference 

between the sampled and theoretical quantiles (Appendix 3). 

Leading predictors for were similar to those for the CCME index, with the percentage of 

heavy pastoral land-cover, rain variability, particle size, and mean catchment slope among 

the top six predictors for both models, with similar response curves (Appendix 3). Percentage 

heavy pastoral land-cover (IS = 26.04) was the most important predictor, well ahead of the 

next two (evapotranspiration, IS = 21.22; rain variability, IS = 20.85) (Table 4). As with the 

CCME-WQI, the response curve for percentage heavy pastoral land-cover suggest a rapid 

decline as pastoral land-cover in the upstream catchment increased from zero to 20%, with 

relatively little change thereafter.  

3.4 Deliverable 4. Random forest models for predicting composite 
index scores  

3.4.1 Model fits 

Model fits for the four version of the composite index ranged from fair to poor, with 

percentage explained variance ranging from 33.0 – 55.4% (Table 5). The corresponding 

diagnostic plots and maps of predicted values for the composite indices are shown in 
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Appendix 3. As was the case for CCME-WQI and VISC-WQI, the leading predictor variables 

for the composite indices were largely predetermined by the choice of components used to 

calculate each sub-index. In the remainder of this section we focus on the characteristics of 

the composite indices: the number of sites for which it could be calculated, its range and 

distribution, and the strength of the underlying RF model.  

Table 5: Summary statistics for three base indices (CCME, VISC-WQI, SQMCI-hb) and four 
composite indicators used to estimate random forest models.   SQMCI-hb scores have been 
converted to percentiles to conform to the 0-100 scale used for the other sub-indices. The last column 
shows the percent of variance explained by each model. 

Index Description 
Site 

number Median Mean SD 
% variance 
explained 

CCME-WQI CCME-WQI 525 10.1 13.8 13.2 54.6 

VISC-WQI VISC-WQI 401 50 49.9 26.4 52.3 

SQMCI semi-quantitative MC index 519 105 105.2 18.9 71.5 

CI3min min(CCME-WQI, VISC-WQI, SQMCI-hb) 153 12.3 16.5 14.3 46.2 

CI3mean mean(CCME-WQI, VISC-WQI, SQMCI-hb) 153 59.3 62.6 21.2 54.6 

CI3median median(CCME-WQI, VISC-WQI, SQMCI-hb) 153 43.8 49.8 26.5 33.0 

CI2mean mean(CCME-WQI, VISC-WQI) 316 26.5 29.7 19.5 55.4 

Random forest models of the CI3 indices (composite indices based on CCME-WQI, VISC-

WQI and SQMIC-hb) were constrained by the limited number of sites used in the models. 

These site numbers were in turn limited by the scarcity of sites for which both water quality 

and macroinvertebrate data were available and met the rules in Section 2.3. There were 153 

sites with suitable data for composite index calculations. Of these, 59 (39%) are in the lower 

North Island (Wellington, Wairarapa, Manawatu), and 29 (19%) are in Southland (Appendix 

3). The remainder of New Zealand is represented by only 65 sites (42% of the total), of which 

45 are derived from the NRWQN and 20 from a further five regional councils. In terms of 

REC climate/land-cover classes representing more than 5% of New Zealand (i.e., 30,000 – 

95,000 reaches), the number of suitable sites per class ranged from 1 to 42, with WD/L and 

CX/M severely under-represented, and CW/L and CW/H strongly over-represented. Spatial 

coverage was better for CI2mean, and the number of suitable sites more than doubled to 316 

when SQMCI-hb was omitted, but the site distribution was still affected by clusters in 

Waikato, the lower North Island, and Southland (Appendix 3). 

Comparisons of the percentage of variance explained by each composite index model 

suggests that using means of the sub-index scores produced better fits than the minima or 

medians (Table 5). We attribute this to the relatively discrete ranges of values for the three 

available components, particularly the tendency for CCME-WQI (range ~0-40) to be much 

lower than either of the other two (range ~ 30-80). Consequently, CI3min (the minimum of 

the three available indices) is usually identical to the CCME-WQI score, and so inherits its 

underlying distribution along with any of its undesirable features. In particular, CI3min has the 

lowest standard deviation of any of the composite indicators, suggesting that it provides less 

discrimination between individual reaches than the remaining three indices. Conversely, 

CI3median has the broadest distribution (standard deviation = 26.5), but the corresponding 

RF model gave the poorest fit (explained variance 33.0%). 
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3.4.2 Model predictions 

Mapped predictions of the four composite indicators appear, at first glance, to be strikingly 

different (Appendix 3), but are in fact broadly similar apart from arbitrary changes in colour 

resulting from their different numerical ranges. Mapped values generally range from 5-35 for 

CI3min; from 45-90 for CI3mean; from 35-75 for CI3median; and from 15-60 for CI2mean. In 

all cases, index values are highest in elevated inland regions, and lowest in lowland areas. 

 

Figure 2: Distribution of predicted values for six water quality indices over all NZReaches (N 
= 574,502).   CI3min, CI3mean, and CI3median refer to the minimum, mean, and median of CCME, 
VISC-WQI, and SQMCI, respectively. CI2mean is the mean of CCME and VISC-WQI. 
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3.5 Deliverable 5. Random forest models for predicting temporal 
trends in macroinvertebrate community indices 

3.5.1 Observed trends 

After reviewing the data yield for each date-filtering rule (Section 2.3), we restricted our 

analysis of trends in invertebrate indices to 331 sites for which at least 10 annual records 

were available since 1 January 20003. Shorter periods of record (e.g., at least 5 years from 1 

January 2005) yielded a large number of sites with apparently significant trends, but most of 

these trends were spurious. In particular, a 5-year analysis of the same 331 sites used for 

our 10-year analysis produced 247 statistically significant trends (pooled across NTaxa, 

SQMCI-hb, EPTtaxa, and %EPTabund). Only 38 of these trends remained significant for the 

corresponding 10-year analysis, suggesting that trends based on only 5 years of data are not 

informative. Longer periods of record would have yielded more robust trends for individual 

sites, but such sites were too few (15 years: 101 sites; 20 years: 58 sites) and too unevenly 

distributed to justify developing a national-scale predictive model. Sites with data that were 

suitable for the 10-year analyses were distributed across New Zealand, except for a gap in 

Auckland. The sites used in the trend analyses included clusters in Taranaki, Nelson City, 

Kaikoura, Banks Peninsula, Timaru, and (to a lesser extent) Southland (Appendix 2).  

Trends that were significantly different from zero at the 95% level were present at 59 (18%) 

of sites for NTaxa; 66 (20%) of sites for SQMCI-hb; 62 (19%) of sites for EPTtaxa; and 60 

(18%) of sites for %EPTabund (Appendix 2). EPTtaxa and %EPTabund showed little 

evidence of consistent regional patterns, but trends in NTaxa and SQMCI-hb were generally 

consistent (although in opposite directions) across multiple sites in Southland, Taranaki and 

Northland. These results suggest that NTaxa has increased slightly in Northland and 

Southland, and decreased in Taranaki. Conversely, SQMCI-hb appears to have decreased 

slightly in Northland and Southland, and increased in Taranaki. 

3.5.2 Modelled trends 

Model fits for 10-year trends were fair for NTaxa (explained variance: 45.1%); poor for 

EPTtaxa (explained variance: 25.0%); and minimal for SQMCI-hb and %EPTabund 

(explained variance: 10.7% and 9.7%, respectively). Only the model for NTaxa is discussed 

further in this report. 

Most of the variance explained in trends in NTaxa trends was associated with rainfall and 

climate, with annual rainfall variability (IS = 28.6) and maximum annual temperature (IS = 

20.1) the only two predictor variables for which the IS exceeded 20 (Appendix 2). Predictor 

variables relating to catchment land-cover made little contribution to the fit, with only one 

such predictor (percentage of heavy pastoral cover) in the top ten (importance score = 8.9; 

ninth in overall importance). The mapped predictions suggest some large-scale spatial 

patterns in the trend direction, but in many areas these bear little relationship to 

environmental or climatic gradients. For example, boundaries between regions where the 10-

year trend changes from increasing (blue shading) to decreasing (red shading), in areas 

such as Central Otago, northwest Nelson, the Southern Alps, and Manawatu/Rangitikei, 

                                                
3 We refer to these as “10-year trends, although the data set includes 38 sites (12% of the total), and 25 sites (8% of the total), 
for which data were available up to 2011 and 2012, respectively. 
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suggest environmental gradients which are inconsistent with the generally homogenous 

landscapes and land-cover in these regions. 

3.6 Deliverable 6. Random forest models for predicting trends in 
physical and chemical water quality variables 

3.6.1 Observed trends 

The parallel analyses of 10-year trends using monthly and quarterly time-series highlighted 

the trade-off between data availability and the ability to detect trends. There were fewer sites 

in the monthly analyses than in the quarterly analyses (monthly: N = 124 to 448 sites; 

quarterly: N = 175 to 531 sites), but there was a slightly higher percentage of meaningful 

trends in the monthly analyses (monthly: 9% to 51% of sites with meaningful trends in a 

water quality variable; quarterly: 11% to 41% of sites with meaningful trends; Table 6). 

However, we repeat the caution that these figures have not been adjusted to allow for 

multiple trend analyses, and may overestimate the number of significant trends. Results for 

the monthly analyses are summarised in Appendix 1; most of the results for the quarterly 

analyses are almost identical to the monthly analyses (apart from the presence of additional 

sites) and are not shown. 

The results in Table 6 show some evidence of consistent trends in water quality, notably for 

CLAR, NH4N, DRP, and TP, all of which appear to be decreasing significantly more often 

than they are increasing. Taken at face value, these results suggest that water clarity may be 

declining, which represents a deterioration in water quality, and concentrations of some 

nutrients are also declining, which represents improving water quality. However, in addition 

to potentially overestimating the number of significant trends, simple tabulation of positive 

and negative trends gives no insight into their underlying spatial distribution. Coherent trends 

at regional or sub-regional scale are likely to be far more meaningful, from an SoE 

perspective, than trends with substantial variation at smaller spatial scales (e.g., between 

adjacent monitoring sites). 

To help evaluate these spatial patterns, each water quality plot in Appendix 1 includes a 

panel at lower left highlighting site by site variation in trends for each variable. Coherent 

regional-scale trends are apparent for CLAR, TURB, NO3N, and TP (Appendix 1). 

Interpretation of these results is limited by the lack of data for some regions, but they suggest 

that CLAR has declined (and TURB has increased) in Waikato; that NO3N has increased in 

Waikato and Southland; and that both NO3N and TP have decreased in the lower North 

Island. Trends in other variables (e.g., ECOLI, DRP) were less consistent, with increasing 

and decreasing trends often apparent at neighbouring sites in the same region. For three 

variables (TEMP, DO, and DOSAT) there was no evidence of spatially coherent increasing or 

decreasing trends. These results are consistent with those reported by Ballantine et al. 

(2010) for variables common to both datasets. 
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Table 6: Number of sites showing significant and meaningful trends in 12 water quality 
variables, 2000-2010, based on monthly and quarterly time series.   Successive columns for each 
time-series show the total number of sites, and the percentage of these sites for which a significant (P 
< 0.05) and meaningful increasing or decreasing trend was detected. For variables marked §, 
increasing trends imply improving water quality. For other variables, negative trends imply improving 
water quality. The percentages in the table are likely to overestimate the true number of significant 
trends; see text for further details. The “significance” column for each variable is the binomial 
probability that the numbers of increasing and decreasing trends are equal, assuming both to be 
equally likely. Thus, for the monthly CLAR analyses, “significant and meaningful” trends were apparent 
at 35% (24% + 11%) of 340 sites, i.e., 81 and 37 (of 118) sites, respectively. The binomial probability 
of this occurring by chance is 0.00003. 

 Monthly time series Quarterly time series 

Water 
quality 
variable 

Number 
of sites 

% significant & meaningful 
Number 
of sites 

% significant & meaningful 

decrease increase significance decrease increase significance 

CLAR § 340 24% 11% <0.0005 405 20% 7% <0.0005 

TSS 124 15% 7% 0.044 175 15% 7% 0.012 

TURB 418 15% 15% 0.500 509 13% 10% 0.132 

TEMP 448 3% 6% 0.010 531 4% 8% 0.007 

DO § 436 3% 17% <0.0005 508 3% 16% <0.0005 

DOSAT § 398 2% 12% <0.0005 481 1% 11% <0.0005 

ECOLI 301 13% 8% 0.065 385 11% 5% 0.002 

NH4N 346 21% 5% <0.0005 355 17% 4% <0.0005 

NO3N 420 21% 26% 0.088 494 14% 26% 0.000 

TN 164 24% 14% 0.021 194 15% 12% 0.244 

DRP 442 40% 11% <0.0005 517 32% 10% <0.0005 

TP 400 30% 10% <0.0005 428 25% 6% <0.0005 

3.6.2 Modelled trends 

Estimated 10-year trends in water quality variables from RF models were essentially identical 

for the monthly and quarterly datasets. Model fits were fair for NO3N (explained variance: 

41.8%); poor for CLAR, DO, and TN (explained variance: 26.3 – 36.1%); and very poor 

(explained variance < 20%) for all other variables (Table 7). Importance scores were low for 

most of the predictor variables in each model, with only five scores exceeding 15, and one 

exceeding 20. The results are also notable for the rarity of significant predictors representing 

land-cover, for which the maximum importance score was 12.2. In particular, the percentage 

of heavy pastoral land-cover, which was a leading predictor variable in the RF models of 

median values for water quality variables (Section 3.2.2, Table 2), was virtually absent from 

the RF models of trends in the same variables; the maximum importance score for heavy 

pastoral land-cover in the trend models was 7.2. In the interests of fully documenting these 

results we provide maps and diagnostic plots for all models in Appendix 1, but emphasise 

that these should be interpreted as illustrating the difficulty of obtaining credible fits rather 

than providing information to be used for State of the Environment reporting.  

One reason for the weakness of these models may be that national trends are confounded 

by regional variation in management practices. For example, increasing trends in one region 

may be partially cancelled out by decreasing trends in another region with similar 

environmental characteristics but contrasting management practices. If so, future models 

may need to take this variation into account. 
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Table 7: Importance scores for predictors of 10-year trends in water quality variables.   The 
percent of variability in each variable explained by the RF model is in the top row, in parentheses. See 
footnotes to Table 2 for formatting conventions used to indicate relative importance. 
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8
.2

%
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Reach elevation 7.2 1.9 4.9 9.9 3.6 5.9 5.0 2.4 4.5 4.3 1.1 1.4 

Catchment elevation 5.9 5.4 6.6 10.5 7.1 10.1 9.5 10.3 6.9 4.8 4.0 6.7 

Mean slope 10.4 4.9 9.2 12.5 7.7 7.6 10.4 8.4 13.3 6.8 4.1 5.7 

Catchment area 8.9 1.6 7.0 8.0 4.5 5.5 8.9 5.1 5.0 8.0 6.6 4.0 

Lake index 8.1 1.7 5.7 4.5 5.4 4.8 -3.4 2.9 3.9 1.6 -0.6 6.3 

Mean flow 8.9 4.0 7.3 8.8 4.3 6.0 8.7 4.4 5.2 7.2 4.0 4.4 

Rain variability 9.6 0.1 5.8 8.5 11.9 9.9 5.8 4.4 12.4 9.5 4.3 6.7 

Min temperature 21.5 5.4 11.2 12.2 9.0 8.4 10.2 10.9 10.3 7.5 4.3 7.8 

Max temperature 6.9 8.9 9.1 13.0 10.5 8.8 8.2 12.9 18.9 11.6 5.6 9.3 

Rain days > 10 11.0 5.9 12.4 10.7 8.2 8.7 12.4 8.9 11.1 6.3 14.5 7.7 

Rain days > 50 9.1 10.0 12.1 10.6 13.9 8.6 7.7 8.0 11.5 6.6 5.5 11.2 

Rain days > 200 6.5 5.5 8.5 6.6 12.4 11.2 1.5 4.4 5.2 1.9 5.7 11.6 

Evapotranspiration 7.8 4.0 7.0 12.1 6.1 7.3 8.4 8.1 11.1 1.7 7.0 3.3 

%alluvium 15.1 6.7 15.6 7.5 10.8 9.3 5.7 8.6 10.8 6.6 2.9 6.6 

%glacial 0.6 1.5 1.3 -2.7 -0.2 2.0 1.8 0.1 2.7 3.6 -1.7 1.7 

%peat 3.6 2.8 3.4 5.6 8.6 11.1 -0.3 6.3 2.7 -1.2 9.8 2.6 

Calcium 6.2 3.4 4.2 8.8 7.1 5.1 5.6 6.8 7.7 3.6 3.6 4.1 

Hardness 6.3 2.5 4.3 9.4 6.5 3.7 7.5 8.3 6.5 4.5 8.3 8.7 

Particle size 10.9 2.7 9.4 8.3 7.2 5.7 6.3 7.1 9.1 5.0 4.5 9.1 

Phosphorous 7.1 6.6 5.6 8.9 9.9 4.7 8.0 7.9 19.2 6.3 4.0 7.4 

%bare 10.2 3.1 8.5 8.1 6.1 5.1 6.3 4.7 5.3 4.1 4.9 4.5 

%exotic forest 9.7 3.6 4.0 7.0 4.4 4.7 3.5 3.0 7.2 8.5 2.2 6.5 

%indigenous forest 6.2 8.6 7.6 8.2 9.3 6.9 7.2 4.9 8.5 4.3 8.1 7.4 

%pastoral heavy 6.3 7.2 5.6 7.2 5.1 6.5 6.7 6.6 5.9 5.6 4.7 5.2 

%pastoral light 6.5 1.5 6.8 12.2 6.6 5.7 9.6 7.1 8.6 4.9 6.9 5.3 

%scrub 6.3 4.6 1.8 7.1 3.7 2.8 7.0 -0.1 5.7 0.9 5.1 3.7 

%urban 3.3 5.9 7.9 8.5 1.3 5.7 2.3 8.8 7.3 3.4 3.7 4.2 

%wetland 5.7 0.2 6.0 6.2 7.6 9.3 3.1 1.5 5.4 4.0 4.2 6.9 
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4 Discussion 

4.1 Random forest models 

The explanatory variables used in the RF models were large-scale, catchment-averaged 

descriptors of climate, topography, geology and land-cover. These accounted for 50% or 

more of the variation in all physical-chemical water-quality variables except DOSAT (43%). 

The same explanatory variables accounted for 55-72% of the variation in four invertebrate 

community indices, and 33-55% of the variation in five multi-metric indices. Some of the 

remaining, unexplained variation in the response variable is due to small scale processes 

such as nutrient uptake and regeneration, to small-scale spatial heterogeneity such as 

habitat patchiness, and to time-dependent processes such as flow fluctuations and diurnal 

variation in DO, DOSAT and TEMP. Given the large spatial scales at which the catchment-

averaged variables operate, the model performance for water quality and invertebrate 

variables was generally good. 

Several of the RF models for the physical-chemical water-quality variables were updates of 

models run with 2003-2007 data in the previous study (Unwin et al. 2010). For these models, 

the predictor variables with high importance scores were generally consistent in both studies, 

and model performance (as explained variance) was comparable. For three variables (CLAR, 

TSS, ECOLI), the newer models performed better due to increased site numbers and 

broader site distributions. For four variables (NH4, DRP, TP, NO3), model performance in the 

2010 study and the current study was very similar. For TN, there was a moderate reduction 

in explained variance, from 78% in the 2010 study, to 74% in the current study. This 

reduction was presumably due to the elimination of > 100 monitoring sites in the current 

study, due to non-comparable TN measurement methods (Larned & Unwin 2012). 

Model performance for the water quality variables that were not used in the 2010 study were 

mixed, with good, fair, and poor fits for TEMP, DO, and DOSAT, respectively. All three 

variables were most strongly related to geographical predictor variables such as elevation 

and slope, and to hydrology and climate. Catchment land-cover was a weak predictor of 

TEMP and had essentially no explanatory power for DO and DOSAT, possibly because the 

data available to us were confounded by variation in time of day. The primary controls on DO 

and DOSAT in rivers are temperature and flow (which control oxygen solubility), and living 

and decomposing organic matter and light (which control oxygen production and 

consumption). None of these are stable landscape-variables; rather, they are time-dependent 

variables that also vary at small spatial scales. Our results do not necessarily imply that DO 

and DOSAT are unsuitable for modelling water quality in terms of landscape variables, but it 

seems likely that such models will require more robust and consistent field data than were 

available to us for this study. 

4.1.1 Commentary on random forest models for analysing and reporting 

The overall goal of the RF models used in this study was to extrapolate median values and 

temporal trends in water quality variables and indices from monitoring sites to the entire 

country. Extrapolation is a fundamental step in analysing monitoring data and reporting the 

results for two general reasons. First, the number of monitored sites is inevitably far smaller 

than the total number of sites (e.g., < 0.02% of the river reaches in New Zealand are 

monitored). Therefore, predictions of state and trends at large spatial scales require up-
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scaling from individual sites. Second, extrapolation is needed to identify unmonitored sites or 

areas where rivers are likely to be degraded or at risk of degradation.  

While there are clearly benefits to extrapolation, there are also some risks. Statistical models 

with low explanatory power (due to the choices of predictor variables) can lead to high 

uncertainty in predictions about unmonitored sites. Predictions for river reaches in sparsely 

monitored and unmonitored environments can also have high uncertainty, and hence low 

explanatory power. High uncertainty limits our ability to reliably identify spatial patterns in 

water-quality and ecology or detect temporal trends. It can also reduce the likelihood that 

management actions will be effective. Finally, maps or tables of predicted water quality 

conditions that do not convey uncertainty can be misleading to stakeholders.  

In the future, several approaches can be used to reduce uncertainty in predicted state and 

trends in river water quality and ecology. Models with different suites of predictor variables 

can be trialled to assess their explanatory power. New monitoring sites can be established to 

fill gaps in the environmental gradients used in the models. If new permanent sites are 

prohibitively costly, then validation data collected from temporary sites can be used to test 

the models. 

The set of predictor variables used for the present study was identical to that used for the 

2010 study (Unwin et al. 2010), and has not been optimised to identify and eliminate highly 

correlated variables. The RF literature (e.g., Breiman 2001) and our previous experience with 

RF-model studies led us to believe that they were relatively immune to over-fitting, but as we 

have gained experience in their use and interpretation we now acknowledge that this is not 

necessarily the case, and that eliminating highly correlated predictors may improve model 

performance. The calculations required to identify the optimal predictor set for each water 

quality variable are computer intensive and were beyond the scope of the present study. 

4.2 CCME-WQI, VISC-WQI and composite indices 

4.2.1 Comparisons among indices 

The current study is the first to trial multi-metric water-quality indices and composite indices 

for reporting national-scale state and trend in New Zealand, and the first to use these 

indicators as response variables in statistical models. The NEMaR expert panel for the 

indicators work-stream identified TURB, CLAR, TEMP (continuous), DO (continuous), 

ECOLI4, NO3N, NH4N, TN, DRP, TP and electrical conductivity as the primary or “core” 

variables to be included in calculations of CCME-WQI. However, we have shown that the 

number of monitoring sites with suitable data decreases steeply as the number of variables 

used in any of the multi-metric indices increases. Since site number has a strong effect on 

model performance and on environmental coverage, it was not realistic to use all 11 core 

variables. 

The CCME-WQI was characterised by uniformly low scores across New Zealand. The 

primary reason for low scores was the choice of references conditions used as objectives for 

each water quality variable, as discussed in the following section. The narrow range of 

calculated CCME-WQI scores for monitoring sites led to a narrow range of predicted scores 

in the RF model. As a consequence, the CCME-WQI model was relatively uninformative; it 

                                                
4 E.coli is used in MfE’s recreational water quality indicator 
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divided Zealand into two general categories, one with marginal water quality (Southern Alps, 

Karamea-Kahurangi, Fiordland, Coromandel and East Cape) and one with poor water quality 

(the remainder of the country; Appendix 3).  

Results of the VISC-WQI model were more informative in the sense of having a wider range 

of predicted scores (Appendix 3). The number of monitoring sites with suitable data for 

calculating VISC-WQI was 30% smaller than for CCME-WQI, but the percent of explained 

variance was comparable for both indices. This suggests that the VISC-WQI model could be 

substantially improved by including more sites. As with the CCME-WQI, the water quality 

variables used in VISC-WQI are not fixed, and model performance can be evaluated with 

VISC-WQI scores based on different sets of variables.  

The composite indices that we trialled were severely constrained by the number of 

monitoring sites with suitable data for calculating each of the sub-indices used in each 

composite index. As a preliminary step in addressing this problem, we trialled composite 

indices with two (CI2) and three (CI3) sub-indices. For CI2, we used two water-quality sub-

indices, CCME-WQI and VISC-WQI. There were 316 sites with suitable data for CI2. For CI3, 

we used CCME-WQI, VISC-WQI and SQMCI-hb; there were 153 sites with suitable data. 

The use of two water-quality sub-indices in these composite indices may be redundant, but 

the addition of one or more invertebrate sub-indices was constrained by the scarcity of sites 

at which invertebrates and multiple water quality variables are monitored. The alternative 

combinations of two sub-indices, SQMCI-hb with VISC-WQI and SQMCI-hb with CCME-

WQI, were not modelled because the number of suitable sites dropped by 32-44% for these 

combinations, compared to CI2. For both CI2 and CI3, the limited number of sites resulted in 

low spatial densities of sites in the RF models, and very uneven site distributions (Appendix 

3). We also note that fitting models with insufficient data makes the results increasingly 

susceptible to over-fitting, particularly when the predictor set (currently 28 variables) is large 

relative to the number of points to be fitted. Detailed investigation of the potential for over-

fitting was beyond the scope of this study, but we suggest that the weak predictive 

performance for models based on less than ~300 sites, even for indices (e.g., CI3mean) for 

which percentage explained variance exceeded 50%, is at least partly attributable to over-

fitting. We anticipate that future standardisation of monitoring site procedures will lead to an 

increase in the number of sites with both invertebrate and water-quality data. At that time, a 

new version of CI2 should be calculated using one invertebrate index and one water-quality 

index, and its performance reassessed. 

Composite indices can be defined as the mean, median or minimum of the standardised sub-

index values. We found that using the minimum was uninformative because the sub-index 

with the smallest value was almost always the CCME-MCI value, which made the CI3min 

model and the CCME-WQI model nearly identical. Using the median of the standardised sub-

index values was more informative, but this approach can only be used when there are three 

or more sub-indices, which severely limits site numbers. Using the mean of the sub-index 

values was more informative than the minimum, and this approach works with two or more 

sub-indices. 

The best-performing RF models of composite indices were for CI3mean and CI2mean; both 

models explained about 55% of the variance in index values. Since there were over twice as 

many sites with suitable data for CI2mean compared with CI3mean, it is likely that CI3mean 

will out-perform CI2mean with a similar number of sites.  
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4.2.2 Commentary on CCME-WQI, VISC-WQI and composite indices for analysing and 
reporting 

Our trials of the CCME-WQI, VISC-WQI and composite indices demonstrate the fact that 

calculated and predicted values for each index are highly context-dependent. The calculated 

values and the categories used to group those values (e.g., excellent, marginal, poor) are 

strongly affected by decisions made at multiple steps in the analysis process. The steps 

include:  

1. Number and identity of variables used in index calculations 

2. Length of record 

3. Reporting upper limits 

4. Reference conditions or “objective values” 

5. Data configuration 

6. Value scaling 

The effects of decisions at each of these steps are summarised below. 

The number and identity of water-quality variables. The selection of water-quality variables 

used in the CCME-WQI and VISC-WQI, and the number and type of sub-indices used in 

composite indices are not predetermined; they are selected by the water quality analyst. This 

property of the indices influences their values and model performance in several ways. First, 

as the number of water quality variables increases, the proportion of variables and the 

proportion of samples that exceed the objectives both increase in the CCME-WQI. These 

exceedances drive down the index values. Second, in assessments of relationships between 

land-use and water quality index values, selecting variables that are insensitive to land-use 

variation will result in weak relationships, and vice versa. Third, the number and identity of 

sub-indices used in composite indices strongly effects composite index values, as discussed 

in Section 3.4.1. Fourth, as the numbers used to in the indices increases, the number of sites 

with suitable data decreases, which effects model performance as discussed below. 

Length of record. Two of the three components in CCME-WQI calculations tend to increase 

as the length of record for a monitoring site increases, independent of water quality 

conditions at the site. One component is F1, the proportion of water quality variables for 

which an exceedance of an “objective” level occurs at least once in the record. The other 

component is F3, “amplitude”, or the amount by which variable measurements exceed their 

objectives. The probability of encountering large exceedances increases directly with the 

length of a data time-series. These properties will cause CCME-WQI values to decrease as 

the length of record increases. 

Reporting upper limits. The F3 (amplitude) component of the CCME-WQI index is potentially 

sensitive to the presence of outliers. For most water quality variables used in the current 

study we were able to remove obvious outliers by inspecting quantile plots for each variable. 

This was not possible for ECOLI, for which upper detection limits varied markedly among 

regions (see Section 2.2). In the absence of a consistent code of practice for reporting water 
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quality variables, a possible interim solution to this problem would be to truncate all raw 

ECOLI counts for all sites above some fixed upper limit. However, this would require another 

ad hoc (and context-dependent) choice. 

Reference conditions. The reference values used for this study to calculate CCME-WQI were 

based on median reference conditions estimated for each nutrient and ECOLI in the absence 

of agricultural land-cover (McDowell et al. 2013). These reference values are quite stringent; 

they are all higher than the national water quality trigger values defined by the Australian and 

New Zealand Environment and Conservation Council (ANZECC). Also, by using medians for 

reference values, we expect exceedances for each variable to occur 50% of the time at sites 

with no agricultural or urban land-cover. More lenient reference values, such as the 

corresponding 80th, 90th, or 95th percentiles above the medians or the ANZECC guideline 

values, would immediately generate higher CCME-WQI scores. This in turn would produce a 

more positive view of water-quality conditions across New Zealand. The effects of the choice 

of reference conditions on CCME-WQI is one example; any other metric or indicator that use 

reference conditions as a variable will be similarly affected. The use of observed:expected 

ratios for water quality assessment, where the expected values correspond to reference 

conditions, is also affected by the choice of reference conditions. 

Data configuration. For multi-year datasets such as the ones used in the present study, the 

data used in calculating index values can take the form of annual, quarterly or monthly 

means or medians, or raw time series. If means or medians are used, extreme values will be 

masked and their effects on exceedences will be reduced. If raw time series are used, there 

will be more and larger exceedences, as discussed above for length of record.  

Value scaling. When water quality or ecological index scores are uniformly low, uniformly 

high, or strongly skewed for sites across a large, environmentally heterogeneous area, those 

indices may be seen as uninformative. This problem could be addressed at two levels, the 

distributions of index scores among sites, and the classes used to group sites by their 

scores. For example, the CCME-WQI scores in the current study were generally low and 

highly left-skewed; scores for 98% of the sites were below 45. Low scores could be raised by 

re-normalising to a median of 50 and a range of 0-100. As a result of the preponderance of 

low scores, 98% of the sites were classed as poor and 1% were classed as marginal. To 

generate more information, the categories could be subdivided (e.g., poor, very poor, 

extremely poor), or rescaled, so that the highest scores in the marginal and poor categories 

become “excellent”, the next highest scores become “good” and so on. Clearly, the 

thresholds between categories are arbitrary. Furthermore, the distribution of sites among 

categories is dependent on the variables used, the length of record, and the choice of 

reference conditions, as discussed above. 

Due to the multiple steps at which data analysts must make decisions, a single dataset 

analysed by different analysts is certain to produce different results. At this early stage in the 

development of water-quality indices for New Zealand, there are no standard calculation 

procedures; instead the decisions listed above are made on an ad hoc basis. This will lead to 

inconsistencies when updating reports between years, and between regional councils, MfE 

and other organisations. Resolving this problem should be straight-forward. First a 

systematic analysis should be carried out to identify the consequences of different choices 

made at each decision step (e.g., compare CCME-WQI performance using the different 

reference conditions listed above). Second, the results of the systematic analysis should be 
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used to recommend standard procedures. Since some decision steps affect conclusions 

about water quality status, the standard procedures should be developed in consultation with 

stakeholders.  

Desirable features in water-quality indices that are intended to produce fine-scale predictions 

across New Zealand include a well distributed network of reference sites; a well-fitting model; 

and a distribution of modelled values which maximally spans the theoretical range (0-100, in 

the present study) for each index. None of the indices considered in this study satisfied all 

three criteria. Some of these deficiencies can be addressed by adjusting the rules used to 

derive each index. In particular, as noted in Section 3.3.1, the CCME-WQI could be made 

less punitive by adjusting the reference values associated with each REC class. Other 

deficiencies were caused by data limitations rather than the properties of the indices 

themselves. For both the CCME-WQI and VISC-WQI, we based our calculations on minimal 

subsets of variables and sites, due to the lack of suitable data for all variables at most sites. 

If in the future, water-quality indices can be calculated using multiple variables, at a large 

number of sites that represent the entire range of river environments in New Zealand, this 

would almost certainly yield more tractable results. Such a dataset does not yet exist, but 

one of the major goals of the NEMaR project is to ensure that better and more representative 

datasets will become available in the future. 

The preceding discussion focused on ways to improve the use of water quality indices for 

summarising New Zealand monitoring data. One final caution concerns the extrapolation of 

those indices from monitoring sites to unmonitored river reaches. Most of the steps used to 

calculate each index for each site involve some form of averaging or smoothing. Raw site 

data are either converted to medians for a specified time period, or summarised as counts of 

exceedances. The resulting values are then combined in index calculations, and these index 

values are themselves combined in composite indices. RF models are then fitted to the index 

values, which introduces yet another level of smoothing, which further reduces detail. 

4.3 Trend analyses 

Trend analyses were carried out for water-quality variables and for the four invertebrate 

indices (NTaxa, SQMCI-hb, EPTtaxa, %EPTabund) for the period from 2000 to 

2010/2011/2012. We reported both the observed trends at monitoring sites, and the national-

scale predicted trends from RF models.  

4.3.1 Observed trends 

One of the practical objectives for the water quality trend analyses was to assess the effects 

of monthly versus quarterly data on trend detection and trend modelling. Since most regional 

councils monitor their SoE sites at least quarterly, the use of quarterly data can increase the 

number of sites used in trend analyses, and this may improve RF model performance. 

Conversely, the use of monthly data in lieu of quarterly data may increase our ability to 

detect statistically significant trends at individual monitoring sites. After filtering sites and 

dates based on the rules set out in Section 2.3, the differences in monthly and quarterly site 

numbers were modest. Across the 12 water-quality variables, the number of quarterly sites 

with sufficient data was 7-29% higher than the number of monthly sites. The effect of shifting 

from quarterly to monthly data on the detection of significant and meaningful trends was 

minimal. For all water quality variables, the number of sites for which trends were detected 

differed by less than 10% between the quarterly and monthly datasets. These observations 
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suggest that future trend analyses can include quarterly data without a substantial loss of 

statistical power. 

Although there are large gaps in monitoring sites with data suitable for trend analyses, large-

scale patterns in meaningful (> 1% per year) trends were apparent for CLAR, TURB, NO3N, 

and TP. There are multiple sites in Waikato with negative trends in CLAR and positive trends 

in TURB. There are also multiple sites in Waikato and Southland with positive trends in 

NO3N. And there are multiple sites in the lower North Island with negative trends in NO3N 

and TP. Most of these patterns were also observed in the previous trend analysis using data 

from 1998 to 2007 (Ballantine et al. 2010, Table 21). 

An interesting and as-yet unexplained pattern in the observed trends is that most sites with 

meaningful negative trends in NTaxa also had meaningful positive trends in SQMCI-hb, and 

vice versa. The reason for a negative relationship between trends in NTaxa and SQMCI-hb is 

not clear. Assuming that this relationship is not spurious, it indicates that, when the diversity 

of sites increases or decreases substantially, the taxa that are appearing and disappearing 

over the trend period are predominately those with low MCI values (e.g., pollution-tolerant 

dipteran insects, crustaceans, gastropods and worms). 

4.3.2 Modelled trends 

RF model performance for trends in water quality variables was poor, with the exception of 

NO3N (42% explained variation for trends in NO3N). The importance scores for predictor 

variables were uniformly low across the water quality variables, which suggests that 

catchment-averaged variables were generally not useful for explaining and predicting 

temporal trends in water quality, as discussed below. 

RF model performance for the invertebrate indices ranged from very poor (e.g., < 10% 

explained variation for trends in %EPTabund) to fair (45% explained variation for trends in 

NTaxa). Due to the low explanatory power, the predicted trends shown in Appendix 2 for 

SQMCI-hb, EPTtaxa, are %EPTabund are not reliable. The trends shown for NTaxa in 

Appendix 2 are more reliable, but the explanatory variables with the highest importance 

scores (annual rainfall variability and maximum annual temperature) are difficult to interpret. 

It is possible that some of these predictor variables are driving trends in invertebrate 

communities, but RF models only indicate broad correlative relationships, not specific causal 

relationships. At best, we can conclude that trends in NTaxa vary among areas with differing 

rainfall-runoff and temperature regimes. 

The limited explanatory power of models of trends in water quality, invertebrate communities 

and multi-metric indices was due in part to limited site numbers and environmental coverage 

(Section 4.1.1), and in part to the calculation process for multimetric indices (Section 4.2.2). It 

was also related to the choice of explanatory variables. We used the RF models to predict 

monotonic changes over a 10-year period with explanatory variables that are either constant 

(e.g., catchment area, altitude, mean slope), or are changing gradually at long time-scales 

(e.g., annual rainfall, annual temperature). These time-scale mismatches may limit the power 

of the RF models. It is logical to expect that water quality will track changes in land-use and 

land-cover; this has been demonstrated in New Zealand with case studies (e.g., Hamill & 

McBride 2003). However, in the current and previous national-scale trend analyses, land-

cover has been implicitly assumed to be constant over the period of interest. In these 

national-scale trend analyses, land-cover data comes from LCDB imagery captured on a 
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single date. A potentially more productive approach would be to use data from LCDB1 (1996-

1998) and the recently created LCDB3 (2008-2009) to develop predictors representing 

temporal changes in land-cover, over a time scale commensurate with the water quality and 

ecology data. 
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Appendix A Graphical summaries of national state and 

trend analyses for 12 water quality variables. 
We present graphical summaries of our analyses for the 12 water quality variables 

considered in this report as a series of A3 panel plots, showing one variable per page, as a 

separate document which accompanies this report. The four main panels for each variable 

show, respectively, diagnostic plots for the fitted random forest model representing current 

state (top left); modelled current state for all New Zealand river segments (top right); 

observed 2000-2010 trends for all sites based on analysis of monthly data (lower left); and 

modelled monthly 2000-2010 trends for all NZReaches (lower right). 

Diagnostic plots for each variable are as follows, from top left: 

 (1)  Observed vs. predicted values for all sites, using the jack knife procedure described 

in Section 2.4. Both axes are plotted to the same scale, with the diagonal dashed line 

representing agreement between observation and prediction. The number of 

observations and the nominal r2 are also shown (cf. Table 3). Axes for TEMP, DO, 

and DOSAT are linear; axes for all other variables are logarithmic. 

(2)  Normal Q-Q (quantile) plot, contrasting the observed distribution of residuals for the 

fitted data (Sample Quantiles) to the theoretical distribution if the residuals were 

distributed normally (Theoretical Quantiles, diagonal line). Most models are 

characterised by large residuals for the most extreme values, indicating a general 

tendency to overestimate low analyte values and underestimate high analyte values, 

but perform well over the majority of the observed data range. 

(3)  Smoothed partial plots (using the default “3RS3R” algorithm as implemented in the 

smooth( ) function of R Version 2.12.1) for the six most important predictors in each 

model indicating the modelled response of the dependent variable to each predictor, 

plotted to a common vertical scale. The “rug” at the bottom of each plot represents 

the distribution of each predictor variable. Additional insight into the influence of each 

predictor can be gained by comparing the vertical response range for each plot with 

the vertical scale on the plot of observed vs. predicted values at top left. 

Mapped predictions for each variable are constructed by plotting the centroid coordinates of 

each REC segment, coloured so as to represent the predicted value, with water quality 

decreasing from blue to red. Colours for log-transformed variables show successive 

percentiles in steps of ~5%, rounded as necessary to convenient integer or near-integer 

values. Colours for TEMP, DO, and DOSAT represent linear steps over the predicted range. 

Sites for which data were available to estimate each model are represented by black circles. 



 

 

Appendix B Graphical summaries of national state and 

trend analyses for four invertebrate community metrics. 
We present graphical summaries of our analyses for the four invertebrate community metrics 

considered in this report as a series of A3 panel plots, also as a separate document, using 

the same plotting conventions as for Appendix A. Axes for all metrics are linear. 

 

 



 

 

Appendix C Graphical summaries of national state and 

trend analyses for six multi-metric and composite water 

quality indices. 
We present graphical summaries of our analyses for the six water quality indices considered 

in this report as a series of A4 landscape panel plots, showing one variable per page. The 

two main panels for each variable show, diagnostic plots for the fitted random forest model 

representing current state (top left); and modelled current state for all New Zealand river 

segments (top right). Diagnostic plots for each variable follow the same conventions as for 

Appendix A. 
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Figure C1: Modelled current state for the CCME water quality index (CCMEindex), showing diagnostic plots for the fitted random forest model (left), and 
modelled indices for all NZReaches (right). 
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Figure C2: Modelled current state for the VISC water quality index (VISCWQI), showing diagnostic plots for the fitted random forest model (left), and 
modelled indices for all NZReaches (right). 
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Figure C3: Modelled current state for a composite water quality index based on the minimum of three component indices (CI3min), showing diagnostic 
plots for the fitted random forest model (left), and modelled indices for all NZReaches (right). 
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Figure C4: Modelled current state for for a composite water quality index based on the mean of three component indices (CI3mean), showing diagnostic 
plots for the fitted random forest model (left), and modelled indices for all NZReaches (right). 
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Figure C5: Modelled current state for for a composite water quality index based on the median of three component indices (CI3median), showing 
diagnostic plots for the fitted random forest model (left), and modelled indices for all NZReaches (right). 
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Figure C6: Modelled current state for for a composite water quality index based on the mean of two component indices (CI2mean), showing diagnostic 
plots for the fitted random forest model (left), and modelled indices for all NZReaches (right). 

 



 

 

Figure A1: Modelled current state and trend data for black disc clarity (CLAR). Successive panels show diagnostic plots for the fitted random forest model 

representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on analysis of 

monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading shows 

improving or decreasing water quality, respectively. 



 

 

Figure A2: Modelled current state and trend data for total suspended solids (TSS). Successive panels show diagnostic plots for the fitted random forest 

model representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on analysis 

of monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading shows 

improving or decreasing water quality, respectively. 



 

 

Figure A3: Modelled current state and trend data for turbidity (TURB). Successive panels show diagnostic plots for the fitted random forest model 

representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on analysis of 

monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading shows 

improving or decreasing water quality, respectively. 



 

 

Figure A4: Modelled current state and trend data for median annual temperature (TEMP). Successive panels show diagnostic plots for the fitted random 

forest model representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on 

analysis of monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading 

shows improving or decreasing water quality, respectively. 



 

 

Figure A5: Modelled current state and trend data for dissolved oxygen (DO). Successive panels show diagnostic plots for the fitted random forest model 

representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on analysis of 

monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading shows 

improving or decreasing water quality, respectively. 



 

 

Figure A6: Modelled current state and trend data for dissolved oxygen % saturation. Successive panels show diagnostic plots for the fitted random forest 

model representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on analysis 

of monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading shows 

improving or decreasing water quality, respectively. 



 

 

Figure A7: Modelled current state and trend data for Escherichia coli  (ECOLI). Successive panels show diagnostic plots for the fitted random forest model 

representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on analysis of 

monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading shows 

improving or decreasing water quality, respectively. 



 

 

Figure A8: Modelled current state and trend data for ammonium nitrogen (NH4N). Successive panels show diagnostic plots for the fitted random forest 

model representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on analysis 

of monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading shows 

improving or decreasing water quality, respectively. 



 

 

Figure A9: Modelled current state and trend data for nitrate nitrogen (NO3N). Successive panels show diagnostic plots for the fitted random forest model 

representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on analysis of 

monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading shows 

improving or decreasing water quality, respectively. 



 

 

Figure A10: Modelled current state and trend data for total nitrogen (TN). Successive panels show diagnostic plots for the fitted random forest model 

representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on analysis of 

monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading shows 

improving or decreasing water quality, respectively. 



 

 

Figure A11: Modelled current state and trend data for dissolved reactive phosphorus (DRP). Successive panels show diagnostic plots for the fitted random 

forest model representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on 

analysis of monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading 

shows improving or decreasing water quality, respectively. 



 

 

Figure A12: Modelled current state and trend data for total phosphorus (TP). Successive panels show diagnostic plots for the fitted random forest model 

representing current state (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites based on analysis of 

monthly data (lower left); and modelled monthly 2000-2010 trends for all NZReaches (lower right). For the trend maps, blue or red shading shows 

improving or decreasing water quality, respectively. 

 



 

 

Figure B1: Modelled current state and trend data for taxonomic richness (NTaxa). Successive panels show diagnostic plots for the fitted random forest 

model (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites (lower left); and modelled 2000-2010 trends 

for all NZReaches (lower right). For trend maps, blue/red shading shows improving/decreasing index values, respectively. 

  



 

 

Figure B2: Modelled current state and trend data for semi-quantitative macroinvertebrate community index (SQMCI). Successive panels show diagnostic 

plots for the fitted random forest model (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites (lower left); 

and modelled 2000-2010 trends for all NZReaches (lower right). For trend maps, blue/red shading shows improving/decreasing index values, respectively. 

  



 

 

Figure B3: Modelled current state and trend data for EPT taxonomic richness (EPTtaxa). Successive panels show diagnostic plots for the fitted random forest 

model (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites (lower left); and modelled 2000-2010 trends 

for all NZReaches (lower right). For trend maps, blue/red shading shows improving/decreasing index values, respectively. 

  



 

 

 

Figure B4: Modelled current state and trend data for percentage EPT abundance (pcntEPT). Successive panels show diagnostic plots for the fitted random 

forest model (top left); modelled current state for all NZReaches (top right); observed 2000-2010 trends for all sites (lower left); and modelled 2000-2010 

trends for all NZReaches (lower right). For trend maps, blue/red shading shows improving/decreasing index values, respectively. 

 


