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Executive summary 
Periphyton is a complex mixture of algae, cyanobacteria, microbes, and detritus found on river beds 

and forming the base of the aquatic food web. Ecologically healthy river ecosystems depend on the 

presence of periphyton, but high periphyton abundance can have negative effects on habitat quality, 

water chemistry and biodiversity, and can reduce recreation and aesthetic values. The New Zealand 

Periphyton Guidelines recommend that maximum periphyton abundance be maintained between 50 

and 200 mg chlorophyll a m-2 to protect benthic biodiversity and angling values, respectively, and 

below 30% filamentous algal cover to protect aesthetic values (Biggs 2000, Suren et al. 2003, Sabater 

and Admiral 2005). The National Policy Statement for Freshwater Management (NPS-FM) mandates 

characterisation of periphyton status by comparing monthly monitoring of river periphyton biomass 

against target biomass bands (NZ Government 2017).  

High periphyton biomass is associated with high nutrients, high light, warm temperatures, and low 

velocities, while periphyton biomass is reduced by grazing invertebrates, unstable substrate and fast 

water velocities (Biggs 1996). In-river nutrient concentrations are often the main driver amenable to 

management of point and non-point nutrient. The NPS-FM requires regional councils to develop 

nutrient criteria to meet specified periphyton biomass targets. Thus, reducing observed periphyton 

abundance and preventing future proliferations are of high priority for regional councils. 

Models that simulate periphyton abundance with respect to growth and loss functions would be 

useful in developing land and water management plans to meet target biomass bands. The main 

management question to be addressed using a river periphyton model in New Zealand is: 

What environmental conditions are required to meet river periphyton biomass (chlorophyll 

a) targets?  

This report provides a review and assessment of the potential for using mathematical, process-based 

(mechanistic) models for predicting river periphyton biomass (measured as chlorophyll a). While 

empirical models correlate periphyton biomass with relevant environmental variables, they are 

constrained in their ability to predict beyond the range of observed conditions. Mechanistic models, 

however, can predict changes outside of the range of conditions that have been observed provided 

that the underlying ecosystem processes are well defined. 

All mechanistic periphyton biomass models in current use account for some biomass growth drivers 

such as nutrients, light, temperature, biomass carrying capacity (related to spatial constraints), and 

loss processes such as respiration, grazing, physically induced and autogenic detachment. The 

mechanistic models reviewed in this report include early (1970s) periphyton biomass river models, 

international river models, and the Tukituki River Model (TRIM) which was developed and has been 

applied in New Zealand. Model applications, benefits, limitations, and some technical details such as 

the programming environment, inputs and outputs, key modelled mechanisms and calibration 

parameters, and temporal and spatial scale were summarised and compiled. 

This report provides a summary of existing mechanistic models and preliminary guidance for 

advancing mechanistic river periphyton modelling in New Zealand. The following steps are 

recommended to inform nation-wide periphyton management using mechanistic periphyton models: 

1) Identify several high priority rivers with distinct characteristics (geomorphology, nutrient 

concentrations, flows, temperature, light conditions/shading, etc.). 
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2) Using the high priority rivers identified in step 1), develop, calibrate, and confirm river-

specific mechanistic periphyton models based on the parsimonious river model (Chapra et al. 

2014). Steps for developing a mechanistic periphyton model are outlined in Appendix B. To 

improve site-specific river periphyton modelling, I recommend focusing on the following: 

a. Collecting high resolution data (hydraulics, temperature, light, nutrients, periphyton) 

using cutting-edge technology such as remote sensing to support model calibration, 

confirmation, and data assimilation; and 

b. Better defining physical and biological periphyton processes (esp. nutrient delivery 

and uptake, biological senescence, and physical detachment) by performing 

laboratory and in situ experiments at the species or periphyton community level. 

3) Apply the calibrated and confirmed, river-specific models to rivers with similar 

characteristics. Recalibrate the models as necessary. Create a look-up table of tested ranges 

of parameter values for specific river classes. The parameter tables should be readily 

available to every periphyton modeller and routinely updated so that models can be 

judiciously applied with an adaptive management approach. 

4) Simulate a suite of possible temporally variable hydraulic, nutrient, light, and temperature 

conditions for a river of interest. Using the results, develop river-specific stressor–receptor 

response curves (periphyton biomass vs. steady state in-river nutrient concentration). Those 

curves can then be used to define site-specific nutrient criteria to meet periphyton biomass 

targets in endpoint (extreme) conditions. The main limitation of this approach is that it sets 

criteria for steady-state conditions. 

Ultimately, coupled atmospheric, catchment, hydrodynamic, sediment transport, nutrient, and multi-

trophic level ecosystem and social/economic models must be used to resolve temporal and spatial 

variability. While challenging, model coupling must be advanced to capture system responses to 

natural and anthropogenic perturbation and inform management decisions. In the meantime, 

management decisions have to be made based on assumed endpoint steady-state conditions. 
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1 Background and objective 
The term periphyton refers to the community of algae and other organisms (e.g., fungi, bacteria) that 

grows attached to riverbeds. While periphyton is a natural part of rivers ecosystems, excessive 

periphyton can lead to degradation of habitat, water quality and in-river values (Biggs 2000a). 

Proliferations of periphyton or “blooms” can be caused by environmental changes including nutrient 

enrichment (generally nitrogen and/or phosphorus), elevated temperatures, and alterations to flow 

regimes that increase periods favouring the accrual of periphyton. 

In-river nutrient concentrations (mass per volume, usually in mg L-1) drive local periphyton growth 

but they in turn are controlled by nutrient inputs or loads (flux as mass per time, usually in kg d-1) 

from land, from upstream, and sometimes from the river bed (sediments). Thus, management of 

nutrient concentrations in rivers targets nutrient sources, both point and non-point. 

1.1 Freshwater management context 

The National Policy Statement for Freshwater Management (NPS-FM, NZ Government 2017) sets out 

a National Objectives Framework (NOF) that includes an attribute for periphyton. The attribute 

defines four periphyton states that reflect ecosystem health, ranging from rare (Band A attribute 

state) to regular (Band D attribute state) periphyton blooms.1 For derivation of the attribute, refer to 

Snelder et al. (2013). Grading against the NPS-FM periphyton attribute requires monthly monitoring 

of river periphyton biomass (measured as chlorophyll, chl a) by regional councils at key sites.2 The 

NPS-FM also specifies that periphyton biomass targets (i.e., the thresholds separating the four 

periphyton states) are to be met by setting nutrient (dissolved inorganic nitrogen, DIN, and dissolved 

reactive phosphorus, DRP) criteria. To manage nitrogen and phosphorus inputs to and 

concentrations in rivers to control or avoid the damaging effects of excessive river periphyton, the 

following questions are relevant: 

1) What in-river concentrations of DIN and DRP are required to yield 50, 120 and 200 mg chl a 
m-2 (NPS-FM biomass thresholds)? 

2) Does DIN or DRP loading (nutrient input from a catchment to a river) reductions affect total 
periphyton biomass?  

3) Does spatially variable DIN and DRP limitation in a river determine the effectiveness of 
nutrient loading reductions?  

4) Would nearly complete elimination of anthropogenic P and/or N loads (especially during high 
irrigation seasons with high runoff) result in river-wide reductions in periphyton levels? 

To answer these questions and set nutrient targets as mandated in the NPS-FM, the use of predictive 

periphyton models has been recommended (MPI and MfE 2018). While it is unrealistic to expect any 

model to be able to accurately predict total periphyton biomass (as chl a) at daily intervals at the 

reach scale for all New Zealand rivers in the near future, models are nonetheless useful tools for 

comparing different nutrient loading scenarios in support of decision making in adaptive freshwater 

management.  

                                                           
1 The periphyton attribute is included for protection of the ecological values of waterways and is specified in terms of chlorophyll a per 
square metre of river bed. States (bands) are ≤50 mg/m2 (A), >50 ≤120 mg/m2 (B), >120 ≤200 mg/m2 (C), and >200 mg/m2 (D). The metric 
required for assignment of a river to a band is the 92nd percentile of monthly observations of chlorophyll a, based on at least three years of 
data. Thus, for a site to fall into band D, chlorophyll a would exceed 200 mg/m2 in at least 4 of 36 monthly surveys. 
2 Here, “key sites” refers to sites identified by regional councils as representing conditions in the freshwater management units defined in 
each region. 
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Previous nutrient guidelines for managing nuisance river periphyton in New Zealand were reviewed 

in recently published draft guidelines on how to address the Periphyton Note of the NPS-FM, i.e., 

setting nutrient targets to manage nuisance periphyton in surface waters (MPI and MfE 2018). 

Nutrient guidelines first set by MfE in 1992 did not focus directly on managing periphyton biomass 

but on sewage fungus and water column dissolved organic matter (MPI and MfE 2018). Later, 

nutrient guidelines were developed based on linear regression (empirical) models derived from data 

collected for 30 hill-fed, cobble-bed New Zealand rivers (Biggs 2000a). Recently available data from 

regional councils are being used to develop regional guidelines following an approach similar to that 

of (2000b). Inclusion of additional variables where appropriate allows for development of region-

specific models (Kilroy et al. 2017, 2018b). Models that were recently considered by MPI and MfE 

(2018) for setting target nutrient guidelines include the mechanistic model TRIM (Rutherford 

2011a,b, 2013a,b), statistical Bayesian Network models (Matheson et al. 2012, Storey et al. 2017), 

broad scale models based on data from the National River Water Quality Network (Larned et al. 

2015, Elliott et al. 2016), and non-linear quantile regression (Matheson et al. 2016). 

In this report, I consider two types of quantitative models: empirical (data-based) and mechanistic 

(process-based) periphyton models. The application of empirical models to predict periphyton 

biomass is the focus of a companion report (Kilroy et al. 2019). The primary objective of this report is 

to assess the potential for the use of mechanistic models for predicting nuisance river periphyton 

biomass at a national scale in New Zealand, with a focus on the following: 

1) comparison of benefits and limitations of existing empirical and mechanistic modelling 

approaches, including early (1970s) periphyton biomass river models, internationally 

developed and applied models, and specifically the Tukituki River Model (TRIM) for New 

Zealand; 

2) description of mechanistic drivers used for modelling periphyton growth, i.e., the role of 

nutrients, light and shading, temperature, substrate, respiration and mortality, grazing, and 

sloughing (senescence and detachment); 

3) recommendations and preliminary guidance on steps forward for periphyton model 

development and application across scales in New Zealand. 

1.2 Common mechanistic periphyton modelling approaches 

The questions raised in Section 1.1 can be re-framed. First, it must be acknowledged that nutrients 

are not the sole controlling factor and several other environmental controls affect periphyton growth 

and nutrient conditions themselves. Assuming that the other periphyton controlling factors are not 

amenable to management and focusing on nutrient management, the following overarching 

question motivates river periphyton modelling: 

What in-river nutrient loads and/or concentrations will allow us to meet target river periphyton 

biomass (chlorophyll a) levels in a river?  

The general mechanistic modelling strategy for relating nutrients to algal growth and biomass is to 

employ rate equations that represent physical and biochemical processes, which depend on site-

specific model parameters and forcing, initial, and boundary conditions (Reckhow and Chapra 1999).  

Periphyton growth models attempt to quantify the gains and losses of biomass and the associated 

sources, transformations and sinks of the controlling nutrients (Figure 1-1). Periphyton growth refers 

to specific productivity (the amount of biomass produced per existing biomass over time). Biomass is 
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usually quantified as chlorophyll a (Uehlinger et al. 1996, Labiod et al. 2007, Flynn et al. 2013), ash-

free dry mass (AFDM, Boulêtreau et al. 2006, Bellmore et al. 2014, Graba et al. 2014), carbon 

(Rutherford et al. 2000, Buzzelli et al. 2000, Ambrose et al. 2006, Rutherford 2011a), or the number 

of algal cells (Asaeda and Son 2000, 2001) per unit area. Periphyton accrual refers to the 

accumulation of biomass over time and is mediated by several factors (Figure 1-2). Physical factors 

that drive or impede periphyton growth are substrate, flow, light, and temperature. Biogeochemical 

cycling of macro- and micronutrients can drive or impede growth. Ecological resistance to periphyton 

growth occurs via grazing by macroinvertebrates. 

  

Figure 1-1: Periphyton biomass accrual is controlled by environmental factors that can enhance or impede 
growth.   Physical factors include light, temperature, hydraulic, and substrate characteristics and 
biogeochemical and biological factors include nutrient concentrations and grazing pressure. Increases in 
nutrient concentrations, light, and temperature usually drive growth, while increasingly unstable substrate, 
high water velocity, and grazing pressure usually impede growth. Adapted from Biggs (1996, Figure 2). 
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Figure 1-2: Idealised periphyton biomass accrual mediated by environmental conditions in the context of 
simple exponential (dotted grey line) and logistic (solid grey line) modelling approaches.   Unimpeded growth 
is modelled with an exponential growth function. Growth limited by carrying capacity is modelled with a 
logistic growth function. In reality, growth is mediated by environmental conditions, which – when stable – 
result in temporary equilibria reflecting different levels of nutrient concentrations (high – eutrophic, medium – 
mesotrophic, low – oligotrophic). Biomass levels can be as high as 1000 mg chl a m-2. Figure adapted from 
Larned et al. (2016, Figure 10.4). 

Several mechanistic river periphyton models are summarised and some technical information about 

these models is presented in Appendix A, Table A-1 and Table A-2. A range of simple to complex 

models that include some or all controlling factors are described in the following subsections. 

Following this section on background information and objectives of this report, Section 2 introduces 

empirical and mechanistic modelling, Section 3 describes and compares common mechanistic 

approaches to modelling periphyton processes. Section 4 discusses further considerations for 

mechanistic periphyton modelling. Section 5 provides conclusions and recommendations based on 

the reviewed literature. 
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2 Introduction 
It is recognised that worldwide, eutrophication is increasing in response to anthropogenic and 

climate change pressures (Janssen et al. 2019) and there is a need for predictive tools to help identify 

drivers and test management scenarios. The susceptibility of rivers to nuisance periphyton depends 

on river characteristics including hydraulic conditions (flow, shear velocity, depth), substrate type 

and mobility, natural nutrient supply, light/shading conditions, water temperature, and invertebrate 

grazing pressure. These drivers are generally well understood (Larned 2010) and some or all are 

components of mathematical biomass prediction models (e.g., River Water Quality Model, Reichert 

et al. 2001; Tukituki River Model, Rutherford et al. 2011a,b; Parsimonious River Model, Chapra et al. 

2014). 

Predicting the effects of nutrient loading and other environmental factors on algal accrual have been 

assessed via two interconnected approaches: empirical and mechanistic modelling. There are few 

purely empirical (data-based) or purely mechanistic (process-based) models, and most models 

include elements of both (Reckhow and Chapra 1999).  

2.1 Empirical vs. mechanistic modelling 

Periphyton modelling has historically been dominated by empirical approaches. Structured empirical 

modelling has a long history in limnology to predict algal biomass (phytoplankton) with respect to 

nutrients in lakes (Vollenweider, 1968, 1975; Rast et al. 1983). Sawyer (1947) first suggested 

inorganic nutrient thresholds to manage nuisance algal growth in lakes. Regression models relating 

periphyton biomass to nutrient concentrations and other variables have been used for Missouri 

rivers (Lohman et al. 1992a), a Montana river (Dodds 1997), and New Zealand rivers (Biggs 2000b). 

The Biggs (2000b) regression relationships linked maximum annual chlorophyll a to mean annual DIN 

or DRP and mean annual accrual time (calculated from flood frequency). The regression equations 

were used to propose mean annual DIN and DRP concentrations necessary to prevent maximum 

chlorophyll a from exceeding specified levels (Biggs 2000b). Recently, the Biggs (2000b) approach 

was used to develop refined empirical relationships for the Canterbury and Manawatu-Wanganui 

regions (Kilroy et al. 2017, 2018). In addition, machine learning models such as boosted regression 

trees (BRTs) and random forest (RF) models have become popular in the scientific literature 

(Wagenhoff et al. 2017). A companion report (Part 1) focuses on data analysis and empirical 

modelling approaches to predict periphyton biomass (Kilroy et al. 2019). 

The main benefits of simple regression-based empirical models are that they often yield 

straightforward relationships that are easy to understand and apply in management and are often 

sufficiently accurate for environmental management and planning. Regression techniques are used 

to fit an equation to observational data. Simple regression models can account for variability by using 

annual medians or means, assuming that an annual average represents the general nutrient status or 

trophic state of a river (e.g., Biggs 2000b and Dodds et al. 2002b). Empirical models do not have to be 

linear but can also be built using more complex equations (e.g., first order polynomials, exponential). 

In addition, machine learning techniques generally have superior predictive ability, but work best 

with very large datasets, use complex algorithms and can be difficult to interpret. 

The main drawback of empirical models is that they do not necessarily identify cause and effect 

relationships and rely on historical data, so that extrapolation (predictions for never observed input 

conditions) becomes highly uncertain. Simple regression models cannot capture nutrient dynamics, 

which are driven by physical mass transport and nutrient cycling, which can in turn control 



 

12 Modelling periphyton in New Zealand rivers 

 

periphyton biomass. For example, periphyton biomass can be constant while water column nutrient 

concentrations decrease with distance from a source, as in Chapra et al. (2014). Similarly, Whitehead 

et al. (1997) tested a neural network model and a mechanistic model given data for six sites on the 

River Thames. The models performed similarly well, but the data-based neural network model 

required reach-specific definition of 5 model parameters for 5 reaches (i.e., 25 calibration 

parameters), while the mechanistic model required one set of 9 river-wide model parameters. Thus, 

empirical models cannot be confidently applied to predict the response of systems to conditions 

beyond the range of data used to develop the model (extrapolation). On the other hand, mechanistic 

models are built based on physical, chemical, and biological process understanding and can thus be 

used to predict environmental responses to conditions that have never been observed before 

(Rastetter et al. 2003).  

Empirical models use aggregated data representing average conditions to reveal average system 

level responses based on correlations. Mechanistic models use disaggregated data representing 

specific conditions to reveal system level responses based on an understanding of underlying 

processes. “As with any ecosystem, modes of inference about river processes are subject to a tension 

between aggregation to reveal system level behaviours vs disaggregation to understand 

mechanisms” (Reijo et al. 2018). Though there can be tension between empirical and mechanistic 

modellers, the two approaches overlap: empirical models are not solely based on correlation but 

implicitly model mechanisms, and mechanistic models cannot avoid using some empirical 

information. Examples of empirical models and some advantages and disadvantages are summarised 

in Table 2-1.
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Table 2-1: Some empirical model types, advantages and disadvantages, and examples.  

Model Type Advantages Disadvantages Examples 

Regression models: 

▪ simple 

▪ multiple 

▪ general linear models 

(GLMs) 

▪ general additive 

models (GAMs) 

▪ Easy to produce and interpret 

▪ Ignore any prior process understanding 

and recognise linear patterns in data 

▪ Do not necessarily identify cause and effect, only 

correlation 

▪ Data that are not normally distributed must be 

transformed to normality 

▪ Wide data range required for best results 

▪ Model coefficients are not biophysically meaningful; 

“black box model” with no (or little) process 

understanding (Whitehead 1997) 

▪ Periphyton in Missouri streams (Lohman et al. 

1992a, Aizaki and Sakamoto 1988) 

▪ Periphyton in Montana rivers (Dodds 1997) 

▪ Periphyton in New Zealand rivers (Biggs 2000b) 

Multivariate machine 

learning models: 

▪ classification trees 

and boosted 

regression trees 

(BRTs) 

▪ Random forests (RFs) 

▪ Artificial neural 

networks (ANN) 

▪ Bayesian belief 

networks (BBN) 

▪ Genetic models 

▪ Probability distribution of input data does 

not have to be known as for traditional 

regression analysis 

▪ Data may vary seasonally and cyclically 

(Maier and Dandy 1996) 

▪ Highly non-linear (Maier et al. 1998) 

▪ Perform well even with noisy or 

incomplete data sets (Tang et al. 1991, 

Burke and Ignizio 1992) 

▪ Can help identify the most important 

drivers in a particular system (e.g., flow 

and temperature, Maier et al. 1998) 

▪ Can ignore a lot of prior process 

understanding and recognise patterns in 

data 

▪ Include multiple indicators, i.e., more 

evidence to make the model more robust 

(BRT) 

▪ Do not establish cause and effect, only correlation → 

“black box” issue (only inputs and outputs are known 

but not internal processes) 

▪ Parameters are not biophysically meaningful 

▪ Parameters are location-specific when derived for data 

obtained for one location 

▪ Neural networks require less pre-existing 

understanding, but their predictions are not necessarily 

superior to those of other approaches (Whitehead et al. 

1997) 

▪ BRT: setting in-river phosphorus objectives using 

nutrient, sediment, and environmental variables 

(Wagenhoff et al. 2017) 

▪ ANN: Anabaena in River Murray in South Australia 

(Maier et al. 1998) 

▪ ANN: 7 types of algae in Saidenback Reservoir in 

Germany (French and Recknagel 1994) 

▪ ANN: various algal species in Lakes Kasumigaura in 

Japan, Biwa in Japan, and Lake Tuusulanjärvi in 

Finland, Darling River in Australia (Recknagel et al. 

1997) 

▪ ANN: algae in River Thames in England 

(Whitehead et al. 1997) 

▪ BBN: water quality (Maren et al. 1990, Tang et al. 

1991, Burke and Ignizio 1992, Quinn et al. 2013) 
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2.2 Simple mechanistic model forms 

The simplest growth model upon which all mechanistic periphyton biomass models are built is the 

exponential growth model, which does not include any growth inhibition resulting in unrealistic, 

infinite biomass predictions over time. The second simplest growth model is the logistic growth 

model, which includes growth inhibition resulting in a steady-state biomass over time. These two 

most simple growth models are highlighted red in Table A-1. 

2.2.1 The exponential growth model 

Idealised periphyton biomass accrual over time is depicted in Figure 1-1. The simplest mechanistic 

biomass or population growth model is the exponential growth function, which represents 

unimpeded growth (dashed grey line in Figure 1-2) driven by an independent, constant growth rate 

(biomass produced per biomass per unit time): 

where X represents biomass (e.g., mg chl a m-2), t is time (d) and µmax is the gross specific growth 

rate, i.e., the maximum rate of biomass produced per unit of biomass per day at optimal conditions 

(here in units of d-1). The exponential growth model leads to unrealistic biomass predictions as time 

increases and is driven by µmax, a key coefficient in any mechanistic model but that cannot easily be 

measured, because truly perfect growth conditions seldom occur.  

Growth rate estimates are derived from measurements; e.g., net growth is estimated as the 

difference between gross primary productivity (GPP, based on measurements of oxygen released 

during photosynthesis) and respiration (based on oxygen consumed during respiration). Modelers 

generally acknowledge the importance of the maximum growth rate (e.g., Rutherford 2013b) and 

measurements from laboratory and chamber studies attempting to represent ideal growth 

conditions support a commonly used range of 0.2–3.0 d-1 for this parameter (Uehlinger et al. 1996, 

Schuwirth et al. 2008, Fovet et al. 2010, Benedini and Tsakiris 2013, Graba et al. 2010, 2014). 

2.2.2 The logistic growth model 

An improvement to the exponential growth model which leads to unrealistic biomass predictions as 

time increases, is the logistic growth model takes the form of an S-shaped biomass curve. This 

function modifies the simple exponential growth equation with a maximum biomass or carrying 

capacity value that dictates the maximum achievable biomass. The logistic growth model 

accommodates space and resource limitation by capping biomass at a prescribed carrying capacity 

that forces the biomass curve to bend and level off (solid grey line in Figure 1-2): 

where Xmax is the maximum attainable biomass and 
𝑑𝑋

𝑑𝑡
, the rate of change in biomass, approaches 

zero as X approaches Xmax. A population or biomass carrying capacity represents any kind of 

limitation that increases with biomass. This biomass-related growth limitation could be caused by 

limited space, disease, predators for populations and the restricting environmental factors shown in 

Figure 1-1 (e.g., nutrients, further discussed in Section 3.1.3). The logistic growth model assumes 

𝑑𝑋

𝑑𝑡
= 𝜇𝑚𝑎𝑥 𝑋 (1) 

𝑑𝑋

𝑑𝑡
= 𝜇𝑚𝑎𝑥  (

𝑋𝑚𝑎𝑥 − 𝑋

𝑋𝑚𝑎𝑥
)  𝑋 (2) 
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that, at some point in time, an equilibrium occurs between driving and restricting environmental 

factors. This may not occur in practice because drivers (e.g., light, temperature, nutrients) usually 

vary with time. 

While mathematically efficient, the maximum sustainable biomass is not a universal constant but 

inconveniently site-specific and difficult to define. In addition, this model does not account for 

biomass losses and only for one growth cycle that ends when the maximum biomass is reached and 

sustained. However, the basic logistic growth model can be modified and enhanced. For example, 

Rodriguez (1987) tested three simple models for estimating periphyton growth parameters: (1) the 

logistic model, (2) a logistic-like model including colonization, and (3) a model including colonization 

and secondary epiphytism. He tested the models on seven data sets and concluded that model 2 was 

the most appropriate, retaining enough complexity to be more realistic than the simple logistic 

model (model 1) but simpler than model 3. However, he noted that model 2 should not be applied 

where sloughing and grazing losses are significant. Others have applied the logistic model and noted 

that it does not account for the effects of light, temperature, or nutrients on periphyton growth 

(Bothwell 1988, Momo 1995, Tsujimoto and Tashiro 2004, Ateia et al. 2016). Some model details are 

summarised in Table A-1 (red background colour indicates this group of models). 

When values for 𝜇𝑚𝑎𝑥 and 𝑋𝑚𝑎𝑥 are determined by calibration and confirmation using site-specific 

biomass measurements, logistic growth models represent steady state conditions. Because effects of 

light, temperature and nutrients are not included, simple logistic growth models cannot be used to 

answer our guiding water quality management question: What in-river nutrient loads and/or 

concentrations will allow us to meet target river periphyton biomass (chlorophyll a) levels in a river? 

3 Mechanistic model processes 

When substrate, space requirements, temperature, light, and nutrient availability, hereafter termed 

environmental forcing conditions, are favourable, the rate of periphyton biomass production 

increases. The term 𝜇𝑚𝑎𝑥 in Equation (1) is the maximum growth rate that occurs under optimal 

forcing conditions and when biomass is low. In practice, the effective (net, actual) growth rate is less 

than 𝜇𝑚𝑎𝑥 because temperature, light or nutrients are usually sub-optimal. In addition, high biomass 

causes self-shading and/or affects the diffusion of nutrients (see Section 3.1.3).  

The basic form of a growth model that includes growth mediation and biomass removal terms is as 

follows: 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 =
𝑑𝑋

𝑑𝑡
= 𝜇𝑚𝑎𝑥 ∙ 𝜙𝑇 ∙ 𝜙𝐼 ∙ 𝜙𝑁 ∙ 𝜙𝑋 ∙ 𝑋 −  (𝑅 + 𝐺 + 𝑆 + 𝑀) (3) 

where the mediation functions for temperature 𝑇, light 𝐼, nutrient concentration 𝑁, and biomass 𝑋 

(𝜙𝑇 , 𝜙𝐼 , 𝜙𝑁 , 𝜙𝑋, respectively) attenuate the maximum specific growth rate 𝜇𝑚𝑎𝑥 and respiration 𝑅, 

grazing 𝐺, flow-induced sloughing (detachment) 𝑆, and mortality and autogenic sloughing 𝑀 are 

removal processes. When the resulting net growth rate or the difference between growth and 

removal rates is positive, biomass is gained (accumulated); when it is negative, biomass is lost. The 

modelling challenge lies in describing and quantifying the effects of each term in Equation (3) well 

enough to predict biomass at an acceptable level of accuracy. The growth-mediating factors and 

associated processes are described in detail in Sections 3.1 and 3.2. 

Growth Losses 
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Typically, biomass accrual follows an oligotrophic, mesotrophic, or eutrophic shape (Figure 1-2). 

While the shape of the biomass accrual curve is similar in different rivers, the rate of biomass accrual 

depends on nutrient concentrations. Increasingly high to low nutrient conditions are referred to as 

eutrophic or nutrient-rich, mesotrophic, and oligotrophic or nutrient-poor, while peak biomass 

depends on both growth and loss processes (e.g., grazing by macroinvertebrates, sloughing and scour 

by high flows).  

3.1 Biomass growth mediation 

Models that are higher in complexity compared to the logistic model incorporate light, temperature, 

and nutrient mediation and sometimes loss mechanisms (models shaded yellow Table A-1, Table 

A-2). These models were developed based on specific experimental or observational data. Among 

the first of such models were those developed by McIntire, Horner, and colleagues (1970s–1990s). 

Horner et al. (1983) conducted flume experiments over a range of DRP concentrations (2–75 ug L-1) 

and velocities (5–75 cm s-1) and modelled periphyton biomass accrual in the channels. While this 

model was deemed unsuitable for application to management, the Uehlinger model (1996, see Table 

A-1, first model in yellow), which stems from prior work by McIntire and Colby (1978), has been 

applied and modified for sites in Europe, the United States, and Japan. This group of models accounts 

for several environmental forcing conditions and some incorporate nutrient cycling, grazing, and 

physical removal mechanisms. However, with respect to eutrophication management, Chapra et al. 

(2014) emphasize two deficiencies in these models: 1) “they do not explicitly account for the impact 

of algal uptake on the concentration of the limiting nutrient (i.e., the limiting nutrients are not 

modelled explicitly)” and 2) “most are not designed to model spatial effects (e.g., the distribution of 

biomass downstream of nutrient sources).”  

This group of models relies on several model parameters and prescribed environmental forcing 

conditions such as light intensity and temperature, site-specific calibration, and validation. These 

models are not spatially explicit (i.e., 0D models), but linkage to a spatially explicit hydrodynamic 

model may aid in setting nutrient load limits to meet in river periphyton biomass objectives. 

3.1.1 Temperature and light effects (ϕI and ϕT) 

Temperature and solar radiation drive photosynthesis and respiration, processes that convert carbon 

dioxide, nutrients, water, and energy in the form of sunlight into oxygen, biomass, and energy. Sub-

optimal light and temperature conditions can dampen or inhibit photosynthesis (DeNicola 1996, Hill 

1996). The Arrhenius equation describes temperature-dependent chemical reaction rates and is 

frequently employed in mechanistic algal biomass models to describe the effects of temperature, but 

other formulations have also been used (Table 3-1). 

Periphyton growth is strongly dependent on the light intensity of photosynthetically active radiation 

(PAR), the visible range of the electromagnetic spectrum. Periphyton community or species-specific 

photosynthesis-irradiance (P-I) curves are often experimentally developed (Table 3-1). Several of 

these P-I equations, sometimes including photoinhibition3 and often experimentally developed for 

marine phytoplankton, are described by Hill (1996); some are simple with constant parameters (e.g., 

Ryther 1956), while others are more complex (e.g., Pahl-Wostl and Imboden 1990). A hyperbolic 

relationship with an asymptotical maximum rate of photosynthesis is often used (Jassby and Platt 

                                                           
3 Inhibition of photosynthesis at high light intensity, resulting in a peak in the PI curve with declining P with increasing I. 
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1976). Some models include a photoinhibition term to account for inhibition of the rate of 

photosynthesis at high light intensity (Platt 1980). 

In situations where light conditions at the water surface (incident irradiance) are not approximately 

equal to those at the surface of the periphyton mat, light attenuation through the water column is 

simulated using the Beer-Lambert Law. 

In a periphyton mat as opposed to a film, only the cells on the surface of the mat are fully 

illuminated, while lower layers are shaded by those above. Higgins (2005) and Martin et al. (2014) 

accounted for light attenuation through both the water column and through the periphyton mat 

using the Beer-Lambert Law, where the controlling model parameters are the light extinction 
coefficients through the water column and the periphyton mat (𝑘𝑒 and 𝑘𝑎𝑙𝑔).  

Table 3-1: Common formulations for temperature (𝑻) and light (𝑰) mediation (𝝓𝑰and 𝝓𝑻, respectively) in 
mechanistic periphyton models.  

Equation Model parameters References 

Eppley for temperature: 

𝜙𝑇 =
0.851

𝑃𝑆
𝐵 (1.066)𝑇 

𝑇 = water temperature 

𝑃𝑆
𝐵  = max rate of photosynthesis Eppley (1972) 

Arrhenius for temperature: 

𝜙𝑇 = 𝜃𝑇−𝑇0  

𝑇 = water temperature 

𝜃 = constant 

𝑇0= reference temperature, 
usually 20 °C 

Goldman and Carpenter (1974), 
Chapra (1997), Asaeda and Son 
(2000), Ambrose et al. (2006), Fovet 
et al. (2010), Bellmore et al. (2014),  

Asymmetric Gaussian distribution for 
temperature: 

𝜙𝑇 = exp (− (
𝑇 − 𝑇𝑜𝑝𝑡

∆𝑇𝑙𝑜𝑤𝑒𝑟

)
2

) , 𝑇𝑚𝑖𝑛 < 𝑇

< 𝑇𝑜𝑝𝑡   

𝜙𝑇 = exp (− (
𝑇 − 𝑇𝑜𝑝𝑡

∆𝑇𝑢𝑝𝑝𝑒𝑟

)

2

) , 𝑇𝑜𝑝𝑡 < 𝑇

< 𝑇𝑚𝑎𝑥  

Assuming that 𝜙𝑇 = 5% at both 𝑇𝑚𝑖𝑛  
and 𝑇𝑚𝑎𝑥: 

∆𝑇𝑙𝑜𝑤𝑒𝑟 =
 𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛

√ln (20)
 

∆𝑇𝑢𝑝𝑝𝑒𝑟 =
 𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡

√ln (20)
 

𝑇𝑚𝑎𝑥= maximum temperature 

𝑇𝑜𝑝𝑡= optimal temperature 

𝑇𝑚𝑎𝑥= maximum temperature 

 

Rutherford et al. (2000) 

Cerco and Cole for temperature: 

𝜙𝑇 = 𝑒−𝛫1(𝑇−𝑇𝑜𝑝𝑡)2
 for 𝑇 ≤ 𝑇𝑜𝑝𝑡  

𝜙𝑇 = 𝑒−𝛫2(𝑇−𝑇𝑜𝑝𝑡)2
 for 𝑇 > 𝑇𝑜𝑝𝑡 

𝑇 = water temperature 

𝑇𝑜𝑝𝑡= optimal temperature 

𝛫1 and 𝛫2 = shape parameters 
defining growth as a function of 
temperature above and below 
𝑇𝑜𝑝𝑡 

Cerco and Cole (1994) 
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Equation Model parameters References 

Michaelis-Menten for light: 

𝜙𝐼 =
𝐼

𝑘𝐼 + 𝐼
 

𝑘𝐼 = light half-saturation constant Uehlinger et al. (1996), Buzzelli et al. 
(2000), Bellmore et al. (2014) 

Beer-Lambert Law for light: 
attenuation through water column: 

𝐼 = 𝐼0𝑒−𝑘𝑒𝐻 

ℎ = water depth from surface to mat 

𝐼0 = incident light (at water surface) 

𝑘𝑒= light attenuation coefficient 
(sometimes several are used for 
attenuation through the water 
column and periphyton mat) 

 

Ryther (1956), Chapra (2006), 
Asaeda and Son (2001) 

Steele’s Law for light: 

𝜙𝐼 =
𝐼

𝐼opt

𝑒
1−

𝐼
𝐼opt 

𝐼𝑜𝑝𝑡 = optimum light intensity for 

growth 

Asaeda and Son (2000), Fovet et al. 
(2010), Steele (1962) 

Hyperbolic P-I curve: 

𝜙𝐼 =
𝑃𝐵

𝑃𝑆
𝐵 𝑡𝑎𝑛ℎ (

𝛼𝐼

𝑃𝑆
𝐵) 

𝑃𝐵  = rate of photosynthesis 

𝛼 = constant characterizing the 
photochemical reactions of 
photosynthesis, defines the initial 
slope of the curve 

𝑃𝑆
𝐵  = max rate of photosynthesis 

Jassby and Platt (1976) 

 

 

 

Half-sinusoid for light: 

𝜙𝐼 =
𝐼

𝐼𝑘

 𝑓𝑜𝑟 0 < 𝐼 <  𝐼𝑘  

𝜙𝐼 = 1 𝑓𝑜𝑟 𝐼 >  𝐼𝑘  

Assume radiation follows a half-
sinusoid during the day, average for 
daily mean: 

𝜙𝐼
̅̅ ̅

=  
𝐷𝑎𝑦

12𝜋
[
𝐼𝑚𝑎𝑥

𝐼𝑘

− √(
𝐼𝑚𝑎𝑥

𝐼𝑘

)
2

− 1 +
𝜋

2

− 𝑠𝑖𝑛−1 (
𝐼𝑘

𝐼𝑚𝑎𝑥

)]  𝑓𝑜𝑟 𝐼𝑚𝑎𝑥 >  𝐼𝑘  

𝜙𝐼
̅̅ ̅ =  

𝐷𝑎𝑦

12𝜋
 (

𝐼𝑚𝑎𝑥

𝐼𝑘

) 𝑓𝑜𝑟 𝐼𝑚𝑎𝑥 <  𝐼𝑘  

𝐼𝑚𝑎𝑥  = daily maximum radiation 

𝐼𝑘  = saturating radiation Rutherford et al. (2000) 
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Equation Model parameters References 

P-I curve with photoinhibition: 

𝜙𝐼 =
𝑃𝐵

𝑃𝑆
𝐵 (1 − 𝑒

−
𝛼𝐼

𝑃𝑆
𝐵

) ∙ 𝑒
−

𝛽𝐼

𝑃𝑆
𝐵

 

𝑃𝐵  = rate of photosynthesis 

 

 

 

 

 

DYPHORA photosynthesis model for 
phytoplankton 

𝛼 = constant characterizing the 
photochemical reactions of 
photosynthesis, defines the initial 
slope of the curve 

𝛽 = constant characterizing 
photoinhibition, defines the final 
slope of the curve 

𝑃𝑆
𝐵  = max rate of photosynthesis 

without photoinhibition 

 

9 parameters, model based on 
hyperbolic P-I curve 

Platt (1980), Hill (1996), Dodds et al. 
(1999) 

 

 

 

 

 

 

 

 

Pahl-Wostl and Imboden (1990) 

Periphyton community or type-specific 
light and temperature mediation 
surfaces: polynomial functions 

(2D surfaces fitted to 
experimental data) 

Graham et al. (1982), Biggs et al. 
(1999) 

3.1.2 Internal and external nutrient effects ϕN 

Assuming optimal light, temperature and physical conditions, periphyton growth is controlled by 

nutrient availability. The macronutrients that most commonly limit algal growth in marine and 

freshwater systems are bioavailable nitrogen (N) and phosphorus (P). Increases in N or P loads to 

freshwaters due to anthropogenic activity often result in eutrophication, i.e., increases in periphyton 

production (Biggs 1988, 2000a,b) and to large diurnal variations in DO and pH which adversely affect 

sensitive organisms). The bioavailable forms of N and P are dissolved inorganic N (DIN, i.e., the sum 

of nitrate, NO3-N, nitrite, NO2-N, and ammonium, NH4-N) and dissolved reactive P (DRP, mainly 

phosphates, PO4-P). Fractions of dissolved organic N and P (DON and DOP) and particulate N and P 

(PN and PP) can also become bioavailable when they are broken down by bacteria and enzymes (e.g., 

Hu et al. 2016, Lambert et al. 2015). The rates at which some forms of these nutrients are taken up 

are variable and nutrient uptake has been extensively studied in North America but not in New 

Zealand (Kilroy et al. 2018). 

Nitrogen and phosphorus control of periphyton has been extensively researched and several reviews 

have been published (e.g., Francoeur et al. 1999, Francoeur 2001, Larned 2010, Keck and Lepori 

2012). In North America, nutrient management has historically focused on P, primarily as a result of 

research on eutrophication in lakes. More recently, co-limitation by N and P has prompted 

recommendations for both N and P management in rivers (Dodds and Smith 2016). In New Zealand, 

simultaneous N and P management has been advised since at least the 1980s (e.g., Lake Rotorua, 

Rutherford et al. 1989, Wilcock et al. 2007). The focus on P over N controls and application of the 

limiting nutrient (Liebig’s law of the minimum4, von Liebig 1840) concept for managing cultural 

eutrophication has recently become a contentious academic discussion topic, but the discussion is 

more focused on phytoplankton in lakes rather than periphyton in rivers (e.g., Lewis and Wurtsbaugh 

2008, Schindler et al. 2012, Schindler et al. 2016, Cotner 2016, Schindler et al. 2017). Based on 

                                                           
4 Carl Sprengel first conceived the idea (1828), which was later formalized by Justus von Liebig (1840). The principle states that biological 
growth is not limited by a total amount of available resources but only by the scarcest of all required resources, the limiting factor (e.g., 
sunlight or a particular nutrient). 
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nutrient diffusing substrate (NDS) experiments, it has been shown that primary nutrient limitation 

can vary from reach to reach along a river (e.g., Kilroy and Wech 2015). 

Mechanistic models usually simulate nutrient limitation (𝜙𝑁) using Michaelis-Menten kinetics in 

which the growth rate increases with increasing concentration of a limiting nutrient (model input) in 

the surrounding water up to a maximum at high concentrations. Each potentially limiting nutrient 

requires a Michaelis-Menten formulation, and the smallest (minimum) of the Michaelis-Menten 

terms is often used to represent nutrient limitation – consistent with Liebig’s law of the minimum. 

Michaelis-Menten kinetics require knowledge of the external (water column) nutrient concentration 

and the half-saturation constant for the limiting nutrient. The latter is defined as the nutrient 

concentration at which half of the maximum specific growth rate is achieved and is often a model 

calibration parameter although it can be estimated from field and/or laboratory experiments (Table 

3-2). This method of modelling nutrient limitation ignores variation in stored nutrient content (cell 

quota), which is the mass of nutrient stored inside algal cells per total algal mass, usually expressed 

as a percent. Stored nutrients are determined by particulate nutrient analysis and the total algal 

mass is usually taken as the dry mass (DM) and sometimes as the ash-free dry mass (AFDM). 

When stored nutrient content is a state variable, the rates of nutrient uptake and loss determine 

nutrient accumulation in periphyton. The nutrient uptake rate depends on internal and external 

nutrient concentrations (Rhee 1973, Brown and Harris 1978, Gotham and Rhee 1981). For example, 

Lohman and Priscu (1992) measured nutrient uptake rates (NH4-N, NO3-N, and PO4-P in µg gDM-1 h-1) 

by the green filamentous alga Cladophora in Clark Fork of the Columbus River in Montana in 1989-

1990 and found that uptake rates could be related to water column nutrient concentrations using 

the Michaelis-Menten equation, which is more often termed the Monod equation when used to 

model nutrient uptake. Monod kinetics are commonly used in mechanistic periphyton models (e.g., 

DeAngelis et al. 1995, Dent and Henry 1999). Models that use Monod kinetics assume a constant cell 

quota and that uptake is physiologically controlled and not limited by nutrient delivery; however, 

external/in-river and internal/stored nutrient concentrations as well as flow conditions/turbulence 

influencing uptake (Section 3.1.3). In addition, differences in alkaline phosphatase activity, an 

indicator of P-limitation, and P uptake by P-limited algae grown under different light intensities and 

wavelengths have been observed (Wynne and Rhee 1988). 

Nutrient uptake rates used in models are generally defined based on benthic chamber experiments 

or in-river measurements to derive metabolism rates (carbon production and consumption) from 

changes in dissolved oxygen (Young et al. 2008). Nutrient uptake rates can be measured during the 

same benthic chamber experiment. Substrate covered by periphyton is placed into a chamber with 

river water that is continuously pumped through the chamber. Nutrient uptake is measured by 

difference in the water nutrient concentration over time. For example, Rutherford (2011a) reported 

DRP, DOP, DIN, and DON uptake and release rates derived from chamber experiments and applied 

those measurements in TRIM. Similarly, Dent and Henry (1999) used nitrogen uptake, release, and 

mineralization rates based on measurements by others (e.g., Busch and Fisher 1981, Grimm and 

Fisher 1984, Mulholland and DeAngelis 2000). Points of caution concerning the derivation of nutrient 

uptake rates from chamber experiments include that periphyton are invariably disturbed as 

substrate is removed from the river and place in the chamber, conditions inside the chamber 

(velocity, flow, temperature) differ compared to those in the river, and the scaling of such small-scale 

measurements up to river reaches likely introduces error (Young et al. 2008). Chamber experiments 

are nonetheless useful because conditions can be controlled. Single chamber experiments may not 

be useful for modelling, but suites of experiments across light, temperature, and external and stored 



 

Modelling periphyton in New Zealand rivers  21 

 

nutrient gradients for different types of periphyton can be conducted to define the uptake rate as a 

function of those variables. 

Another, more complicated mechanistic approach to simulate nutrient limitation is by means of 

Droop kinetics (Droop 1973, Table 3-2) in which the growth rate depends on external (water column) 

nutrient concentration and on the concentration of nutrient stored within the periphyton; i.e., 

nutrient-saturated periphyton (high cell quota) have a higher growth potential or capacity to multiply 

than starved periphyton (low cell quota). In the Droop model, cell quota can either be an input or 

another modelled state variable (like biomass). The periphyton cell quota increases as a result of 

nutrient uptake from the surrounding water and decreases as nutrients are used for periphyton 

growth.  

Cerucci et al. (2010) tested both modelling approaches (Michaelis-Menten and Droop kinetics) within 

the WASP model on a river in New Jersey and found that predictions were better when Droop 

kinetics, were applied to simulate periphyton growth. Droop kinetics account for luxury nutrient 

uptake, which refers to nutrient uptake beyond an alga’s nutrient requirements to maintain cell 

structure and storage of those nutrients (e.g., as polyphosphates) for future cell division. It can be 

thought of as nutrient storage during times of plenty for nutrient use during times of drought. 

Table 3-2: Common formulations for nutrient (N) mediation (𝝓𝑵) in mechanistic periphyton models.  

Equation Model parameters References 

Michaelis-Menten (and/or Monod): 

𝜙𝑁 = min
𝑖

(
𝑁𝑖

𝑘𝑁𝑖
+ 𝑁𝑖

) 

𝑁𝑖  = nutrient concentration (e.g., 𝑖 = N 
or P) 

𝑘𝑁𝑖
 = nutrient half-saturation 

constant 

McIntire (1973), Buzzelli et al. 
(2000), Fovet et al. (2010), 
Rutherford (2011a), Bellmore et al. 
(2014), DeAngelis et al. (1995), Dent 
and Henry (1999), Boulêtreau et al. 
(2006) 

Droop: 

𝜙𝑁 = 1 −
𝑞0

𝑞
 

𝑞 = cell quota 

𝑞0 = minimum cell quota, internal 
nutrient concentration stored in 
algal cells (expressed as % of dry 
mass) 

 

Droop (1973) 

Auer and Canale (1982), Flynn et al. 
(2013), Flynn (2014), Asaeda and 
Son (2000), Son and Fujino (2003), 
Ambrose et al. (2006), Cerucci et al. 
(2010) 

 

3.1.3 Nutrient dynamics and carrying capacity ϕX 

At optimal light and temperature, periphyton productivity is controlled by hydraulics and 

geomorphology. Flow, water velocities, shear stress, substrate size, stability and roughness (Murdock 

and Dodds 2007) and time mediate colonization and adequate nutrient delivery from the water 

column to the benthic biomass. River hydraulics and mat thickness also affect nutrient uptake. 

Nutrient delivery to algal cells in periphyton and its dependence on water column nutrient 

concentrations and hydraulic conditions were investigated by Whitford (1960) and Larned et al. 

(2004). Whitford (1960) concluded that diffusion was limited at velocities under 15 cm s-1; and 

Larned et al. (2004) conceptually modelled positive (enhancing nutrient delivery) and negative 

(increasing potential for detachment) effects of turbulence on periphyton growth. Contrasting slow 

molecular diffusion through the periphyton mat and turbulent diffusion in the main river affect 
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nutrient access for periphyton. At low velocities, mass transfer through a thick boundary layer 

controls nutrient delivery; at high velocities, transport across algal cell membranes (active transport 

systems) controls nutrient delivery (Larned et al. 2004, Jumars et al. 2001). In riverside channel 

experiments, maximum growth rates were achieved at lower nutrient concentrations for thin 

periphyton mats (Bothwell 1989), which suggests no hydraulic limitation of nutrient delivery. For 

dense mats, however, higher nutrient thresholds were required to saturate growth (Bothwell 1989), 

consistent when nutrient transport through the mat is limiting. Nutrients diffuse more readily into 

and out of the surface layers than those below the surface. Nutrient limitation due to delivery is 

generally implicitly accounted for by a biomass-dependent carrying capacity term. 

Introduced in Section 2.2.2, a carrying capacity term can be used to implicitly model limitation of 

periphyton productivity by nutrient delivery through the mat. Such a biomass limitation mechanism 

mathematically curbs exponential growth by decreasing the growth rate to zero with an expression 

that depends on a defined maximum sustainable biomass (Xmax), resulting in an S-shaped biomass vs. 

time curve with a horizontal asymptote at Xmax. Conceptually, the carrying capacity is the maximum 

sustainable biomass in the system given biomass-related constraints. Generally light, temperature, 

and nutrient mediation are modelled separately (see Sections 3.1.1 and 3.1.2) and physical space 

constraints, self-shading, and any other less tangible growth mediation factors related to biomass 

density or mat thickness are accounted for in the carrying capacity expression. Biomass limitation 

may occur due to competition for space (see the Water Quality Analysis Simulation Program WASP7 

and WASP8 user manuals, Martin et al. 2006, 2014) and/or nutrient delivery and light constraints at 

the bottom of a thick periphyton mat (Uehlinger et al. 1996, Higgins et al. 2005). An alternative 

means of accommodating carrying capacity constraints is by simulating self-shading, which restricts 

biomass growth as more biomass accumulates and shades cells below the mat surface (e.g., Asaeda 

and Son 2000, Higgins et al. 2005). Some methods of modelling carrying capacity/biomass limitation 

are summarised in Table 3-3. All approaches require model parameters that are difficult to define: a 

maximum sustainable biomass (carrying capacity) or a half-saturation constant for biomass, terms 

that are system-specific and can hide shortfalls in other model processes. Remembering that “all 

models are wrong, but some are useful” (Box 1987), these formulations – while not perfectly 

physically based – can nonetheless be useful for management applications when parameters are 

appropriately chosen for the site of interest. 

Table 3-3: Common formulations for carrying capacity (ϕX) in mechanistic periphyton models.  

Equation Model parameters References 

Logistic growth/saturation: 

𝜙𝑋 =
𝑋𝑚𝑎𝑥 − 𝑋

𝑋𝑚𝑎𝑥

 

𝑋 = biomass 

𝑋𝑚𝑎𝑥  = maximum sustainable 
biomass 

Ambrose et al. (2006, WASP7), 
Canale and Auer (1982), 
Tomlinson et al. (2010), Higgins 
et al. (2005), Malkin et al. (2008), 
Buzzelli et al. (2000) 

Modified logistic growth: 

𝜙𝑋 = 1 − (
𝑋

𝑋𝑚𝑎𝑥
)2  

𝑋 = biomass 

𝑋𝑚𝑎𝑥  = maximum sustainable 
biomass 

Martin et al. (2014) 
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Equation Model parameters References 

Michaelis-Menten: 

𝜙𝑋 =
𝑋

𝑘𝑋+𝑋
  or 𝜙𝑋 =

1

1+𝑘𝑋𝑖𝑛𝑣𝑋
   

𝑋 = biomass 

𝑘𝑋 = biomass half-saturation 
constant 

𝑘𝑋𝑖𝑛𝑣 = inverse biomass half-
saturation constant 

Uehlinger et al. (1996), 
Rutherford et al. (2000), 
Rutherford (2011a), Bellmore et 
al. (2004), Boulêtreau et al. 
(2006) 

In addition to nutrient delivery, nutrient cycling via periphyton uptake and release in a river is termed 

‘nutrient spiralling’ and presents a modelling challenge. It is this process, directly tied to high spatial 

variability in rivers, that primarily distinguishes river periphyton modelling from lake periphyton 

modelling (Chapra et al. 2014). Few periphyton models take nutrient delivery and cycling (particulate 

to soluble forms and vice versa) into account, but some models differentiate between different 

nutrient concentrations in the laminar sublayer over the periphyton and the overlying mainstream 

(Saravia et al. 1998, Whitford 1960, McIntire 1968, Horner et al. 1990). DeAngelis et al. (1995) 

modelled transient storage zones, regions where nutrient concentrations can be mediated by 

biological communities either via uptake and conversion to organic material or via release through 

respiration and mineralisation during decomposition. Nutrient uptake and release by periphyton are 

highly dynamic and heterogeneous along a river, which makes it challenging to model (Rutherford 

2011). 

The parsimonious river model (Chapra et al. 2014, Table A-1) simulates nutrient pools, incorporates 
variable nutrient uptake, and offers enough spatial resolution to predict periphyton biomass at a 
distance downstream from a nutrient point source. This model is based on work by Thomann and 
Mueller (1987), who assumed 1D, spatially uniform, steady state plug flow5 and constant nutrient 
uptake rates by periphyton. The state variables are periphyton biomass as chlorophyll a (a, mg chl a 
m-2), bioavailable phosphorus concentration (p, µg P L-1), bioavailable nitrogen (n, µg N L-1), and 
organic matter (c, mg C L-1). The organic matter pool represents dead or sloughed periphyton 
biomass and is assumed to have the same stoichiometry (N and P content) as live periphyton. It is 
also assumed that the material does not settle but hydrolyses and eventually releases N and P that 
contribute to the bioavailable nutrient pools. The main benefit of this model is its simplicity, which is 
analogous to early mechanistic mass balance models for lake management. There is potential for 
application of this model in setting nutrient loading targets to meet in-river periphyton biomass 
targets for steady state conditions, following site-specific model calibration and validation. However, 
the authors emphasise its limitations (Table A-1 and Table A-2) and the need for more complex 
models in cases where species competition, multiple point and point source loadings, non-steady 
state flow, and interactions with higher trophic levels are important. 

Similarly, moderately complex river periphyton models incorporating nutrient cycling and uptake, 
self-shading effects, more complex loss mechanisms (sloughing and grazing), and spatial 
heterogeneity have been developed for specific locations/situations. For example, lateral 
heterogeneity and self-shading were included to model the growth of the filamentous green alga 
Cladophora in a Montana, U.S. river (Flynn et al. 2013). The Stream Algorithm (SAL) was developed to 
assess the relative ability of mayflies and snails (grazers) to control periphyton biomass in hill country 
rivers at Whatawhata, New Zealand (Rutherford et al. 2000). The Tukituki River Model (TRIM) is more 
complex in that it includes nutrient cycling between different N and P pools (Rutherford 2011a). 
These models become increasingly complex as more rate coefficients, species characteristics, and 

                                                           
5 Plug flow is a conceptualization used in chemical process modelling, where a fluid is assumed to flow uniformly through a pipe with no 
shearing between layers and “plugs” or segments/packages of chemically distinct fluid flow through without mixing with the preceding or 
subsequent plugs. 
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nonuniform channels and hydraulics are included. Model details are summarised in Table A-1 and 
Table A-2. 

3.2 Biomass loss processes 

As previously introduced in Section 2 and Figure 1-1, the loss or removal processes in mechanistic 

models include respiration 𝑅, grazing 𝐺, flow-induced sloughing (detachment) 𝑆, and mortality and 

autogenic sloughing 𝑀. Mass-based (DM, AFDM, or carbon) models include biomass losses due to 

respiration, mortality, and temperature-induced autogenic soughing (e.g., Asaeda and Son 2001, 

Martin et al. 2006, Rutherford 2011a, Bellmore et al. 2014, Boulêtreau et al. 2006, Martin et al. 

2014). In contrast, some chl a models only represent autotrophic production and do not include 

respiration, mortality or autogenic sloughing terms (e.g, Graba et al. 2010). 

3.2.1 Respiration R 

Respiration occurs both in light and dark conditions and can be modelled as the sum of basal and 

light-enhanced respiration (e.g., Canale and Auer 1982, Tomlinson et al. 2010). The magnitude of the 

rate of respiration is mediated by temperature and, in the case of light-enhanced respiration, light. 

The maximum rate of respiration is either a model calibration coefficient or derived from 

experiments. Biomass models usually define the respiration term using first order, temperature-

mediated kinetics (Table 3-4).  

Table 3-4: Common formulations for losses due to respiration (R) in mechanistic periphyton models 
simulating biomass dry mass (DM), ash-free dry mass (AFDM), or carbon.  

Equation Model parameters References 

Basal and light-enhanced respiration: 

𝑅 = 𝑅𝐵 + 𝑅𝐿 

𝑅𝐵 = 𝑎𝑇 + 𝑏 

𝑅𝐿 = 𝑅𝑚𝑎𝑥𝑀𝑅 

𝑇 = water temperature 

𝑎, 𝑏 = fitting parameters 

𝑅𝑚𝑎𝑥  = maximum light-enhanced 
respiration rate (d-1) 

𝑀𝑅= dimensionless multiplier, 
based on experimental data 

Canale and Auer (1982), Tomlinson 
et al. (2010) 

Temperature-mediated respiration: 

𝑅 = 𝑘𝑅,ref 𝜃𝑅
𝑇−𝑇ref𝑋 

𝑇 = water temperature 

𝑋= biomass 

𝑘𝑅,ref = constant 

𝜃𝑅= constant 

𝑇ref= reference temperature, 
usually 20 °C 

Martin et al. (2006 WASP7, WASP8), 
Rutherford et al. (2000), Rutherford 
(2011a), Bellmore et al. (2014) 

 

3.2.2 Grazing G 

Grazing is a periphyton biomass loss mechanism (Feminella and Hawkins 1995, Steinman 1996, 

Hillebrand et al. 2002) that can limit periphyton accrual even in the presence of high nutrient 

concentrations (e.g., Biggs et al. 1998, Sturt et al. 2011). Several studies have been conducted to 

measure and simulate grazing. For example, Welch et al. (2000) conducted grazing experiments in 

outdoor flumes and indoor aquaria and measured mayfly, caddisfly, and snail grazing rates ranging 

3.5–20 mg chl a m-2 d-1; Elwood and Nelson (1972) measured snail grazing rates ranging 14–23 g 

AFDM m-2 d-1 in a southeastern U.S. river; and Pinowska (2002) measured grazing rates of one snail 

species ranging 2.4–45.5 mg AFDM (g snail)-1 d-1 with respect to three periphyton species. 

Invertebrate nutrient requirements differ from those of periphyton and invertebrates can exacerbate 

P-limitation if background P concentrations are low (Bowman et al. 2005). In addition, different 
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invertebrate species may compete for food, vary in their susceptibility to flood intensity and 

duration, and have different food preferences (Murdock et al. 2004). The ranges in grazing rate and 

variability with respect to grazer and periphyton species indicate why invertebrate grazing is not 

frequently modelled. However, Villanueva et al. (2004) found that, regardless of differences in 

abundance and mouthpart morphologies, the overall grazing effects of a mayfly and a snail species 

on periphyton were comparable in a Patagonian river, suggesting that the grazing effect due to 

different grazer species could be combined in a model. Nonetheless, when grazing is included as a 

variable periphyton loss rate, a grazer population model and associated nutrient uptake and release 

greatly increase overall model complexity and uncertainty. 

Some models do include grazing mechanisms, generally as a function of grazer biomass, but do not 

include nutrient uptake and release (McIntire 1973, Rutherford et al. 2000, Graba et al. 2014). The 

Stream Algorithm (SAL) by Rutherford et al. (2000) includes a grazer biomass (𝐺, gC m-2) sub-model 

that simulates top-down control of periphyton biomass; the sub-model is driven by rates (in gC m-2 d-

1) of food assimilation (𝐴𝑠𝑠), grazer colonization (𝐺𝑐𝑜𝑙), respiration (𝑅𝑒𝑠), activity costs (𝐴𝑐𝑡), 

predation and mortality (𝑃𝑟𝑒), and export loss (attributed to scour, drift, and emergence, 𝐸𝑥𝑝): 

𝑑𝐺

𝑑𝑡
= 𝐴𝑠𝑠 + 𝐺𝑐𝑜𝑙 − 𝑅𝑒𝑠 − 𝐴𝑐𝑡 − 𝑃𝑟𝑒 − 𝐸𝑥𝑝 (4) 

SAL model parameters that drive the grazing rate are the maximum search rate and food handling 

time, which is the time required to digest prey when grazers are not searching. There are 27 model 

parameters, of which seven were determined by calibration and the others were assumed or taken 

from the literature (refer to Table 1 in Rutherford et al. 2000). While this model is complex, the 

authors note that its calibration is site-specific and one of its weaknesses is that it does not simulate 

detritus or other trophic levels that affect grazers. 

There are several more complex river periphyton models that simulate several species (e.g., McIntire 

and Colby 1978, Abdul-Azis et al. 2010). Results from a study using a longitudinally resolved nutrient-

periphyton-grazer model (Spatial Algal Simulation Model, SPASM) indicated that invertebrates had 

little influence on periphyton abundance but that spate frequency and magnitude played a more 

important role in the upper reaches of Mangaotama Stream (tributary of Waipa River; Broekhuizen 

et al., unpublished). 

Complex lake ecosystem models simulate phytoplankton losses due to zooplankton grazing, which is 

analogous to periphyton losses due to invertebrate grazing. Examples of spatially resolved aquatic 

ecosystem models include DYRESM-CAEDYM (e.g., Jones et al. 2018), ELCOM-CAEDYM (e.g., Trolle et 

al. 2014), and EFDC (e.g., Sinha et al. 2012). 

3.2.3 Physically induced and autogenic sloughing S 

As noted in a NIWA review (Kilroy et al. 2018), physical constraints of river periphyton growth in New 

Zealand has been an extensively researched topic (e.g., Biggs 1995, 1996, Biggs and Gerbeaux 1993, 

Biggs and Thomsen 1995, Biggs and Stockseth 1996, Biggs et al. 1999). Biggs (1995) investigated the 

relationship between chlorophyll a and flood frequency and nutrient concentrations with respect to 

geology and land use and concluded that flood disturbance and nutrient enrichment are likely the 

most important controllers of periphyton biomass. Biggs and Gerbeaux (1993) used data from six 

New Zealand river sites to support the ecological theory of large scale “ultimate” controls (climate, 

geology, and land use) and small scale “proximate” controls (nutrients, hydraulics, and substrate) of 

periphyton growth (Naiman et al. 1992). Biggs and Thomsen (1995) quantified the shear stress 
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tolerances of different periphyton assemblages and found non-filamentous diatom communities to 

be the most resistant. Biggs et al. (1999) investigated the frequency of high velocity events and 

sediment removal and concluded that the latter plays an important role in periphyton sloughing, 

apart from water velocity alone. 

Listed in the order of increasing water velocity, there are three physical periphyton removal 

mechanisms (Biggs et al. 1999, Francoeur and Biggs 2006, Hoyle et al. 2017):  

1) sloughing (detachment) due to shear stress exceeding periphyton tensile strength, 

2) abrasion by suspended sediment, 

3) molar action, i.e., movement (rolling/tumbling) of the solid substrate that is colonized by 

periphyton. 

At lower flows that do not mobilize sediment or larger, colonized substrate, sloughing occurs when 

velocity-induced shear stress exceeds the periphyton holdfast or adhesion strength. The sediment 

grain size distribution determines bed stability and potential for abrasion and molar action (Hoyle et 

al. 2017). At stronger flows that mobilize fine sediment (silt, sand), sloughing occurs when the 

suspended sediment abrades periphyton from the substrate. At high flows that mobilize colonized 

substrate, sloughing occurs when the larger colonized substrate (cobbles, boulders) rolls on the river 

bed and that way sheds its periphyton cover. Water velocity induced sloughing and abrasion by 

suspended sediment may be modelled as a constant or flow- or velocity-dependent sloughing rate 

that continually decreases periphyton biomass but leaves enough biomass for rapid regrowth to 

occur. Molar action, however, results from distinct catastrophic events that rapidly reduce 

periphyton biomass to a minimum and result in slower regrowth after the event. Field 

measurements have shown that abrasion is likely the most important removal mechanism 

(Francoeur and Biggs 2006, Hoyle et al. 2017). 

The duration of the period during which water velocities are low and substrate is stable determines 

the accrual period, or time during which periphyton biomass grows to a maximum before it is 

removed by one of the three described mechanisms triggered by flow. Horner and Welch (1981) 

measured chl a accrual on rocks in rivers at various current velocities and were the first to examine 

the effects of different nutrient/velocity combinations. They found that algal accumulation increased 

at velocities up to ~50 cm s-1 when DRP concentrations exceeded 40–50 µg L-1. Accrual rates 

decreased with increasing velocities when DRP concentrations were lower. It was hypothesized that 

accumulation is a result of competing growth rates determined by nutrient availability and velocity-

dependent shear stresses: “Relationships of accrual rate with time for the respective rivers generally 

showed chl a accumulation to be inversely related to velocity, except when orthophosphate-

phosphorus concentration continuously surpassed 45 µg L-1.” These results agreed with results from 

McIntire (1966) and Phaup and Gannon (1967). Horner and Welch (1981) also found that “[v]elocity 

increase apparently assists productivity by improving turbulent diffusion,” supporting previously 

discussed concepts concerning nutrient delivery. 

Physical factors drive sloughing in a mechanistic model. Often, sloughing is modelled as a function of 

biomass, flow, velocity, or bottom shear stress, usually involving at least one tuning parameter 

(calibration coefficient), and a threshold value above or below which sloughing is triggered. Horner et 

al. (1983) and Welch et al. (1989) modelled detachment as D = K2Vϴ, where V is the mean velocity 

and ϴ is an empirical parameter (Table 3-5). Saravia et al. (1998) modelled detachment using a 

quadratic expression with two model fitting parameters and water velocity to account for shear 
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stress of the periphyton mat. They fitted model parameters for different sites and seasons. Uehlinger 

et al. (1996) modelled detachment as a function of flow and biomass, allowing detachment to occur 

when a specified minimal biomass is exceeded. The detachment rate is directly proportional to flow 

and biomass, as defined by an empirical detachment coefficient, Cdet. Additionally, a site-specific 

catastrophic loss rate, kcat, is used during bed moving spates. Based on the model developed by 

Uehlinger et al. (1996), Labiod et al. (2007) developed a mechanistic model to simulate biomass 

produced in laboratory flume experiments in relation to current velocity. 

The shear stress of sand on substrate (cobble) is an important factor and has been simulated using 

several coefficients describing substrate mobility and periphyton- and attachment-specific resistance 

to detachment and drag forces (Tsujimoto and Tashiro 2004, Hondzo et al. 2002, Asaeda and Son 

2001, Table 3-5). Such models are complicated, can be computationally cumbersome, and introduce 

more uncertainty with each model fitting parameter or property-specific assumption (e.g., mean 

cobble and sand diameter, periphyton detachment coefficients, etc.). The influence of velocity and 

sediments on community structure remains a challenge to model (Flynn et al. 2013). 

Less common approaches to model sloughing are to use light and turbidity as indirect triggers. For 

example, Asaeda and Son (2001) used a light index to estimate algal tensile strength to compare to 

the water drag force. Fovet et al. (2009) suggested that turbidity can be used as an algal detachment 

trigger. 

Table 3-5: Common formulations for losses due to sloughing (S) in mechanistic periphyton models 
simulating biomass dry mass (DM), ash-free dry mass (AFDM), or carbon.  

Sloughing rate formulations Model parameters References 

Velocity- or sheer stress-dependent S: 

𝑆 =  𝑘2𝑉𝜃 

𝑉 = mean water velocity at periphyton mat 
surface 

 

𝑆 =  𝑑𝑡𝑋𝑡(𝑉𝑡  –  𝑉)2  

𝑉𝑡= actual water velocity at time t 

𝑋𝑡  = biomass at time t 

 

Critical shear velocity or shear stress 
beyond which sloughing occurs 

𝑘2, 𝜃= empirical fitting parameters 

 

 

 

 

𝑑𝑡  = degree of sloughing when 
current velocity is higher than the 
mean velocity (𝑉), both are empirical 
fitting parameters 

Horner et al. (1983), Welch et al. (1989) 

 

 

 

Saravia (1998) 

 

 

 

Rutherford (2011a), Fovet et al. (2010, 
2012), Toda et al. (2005) 

Flow- and biomass-dependent S 
(continuous removal and by catastrophic 
events): 

𝑆 =  𝑐𝑑𝑒𝑡𝑄(𝑋 − 𝑋0) + 𝑘𝑓𝑙𝑜𝑜𝑑𝑄(𝑋 − 𝑋0) 

where catastrophic detachment is 

𝑘𝑓𝑙𝑜𝑜𝑑 = {
0 𝑓𝑜𝑟 𝑄 <  𝑄𝑐𝑟𝑖𝑡

𝑘𝑐𝑎𝑡  𝑓𝑜𝑟 𝑄 ≥  𝑄𝑐𝑟𝑖𝑡
} 

𝑋 = biomass 

𝑋0 = initial (or residual) biomass after 
spates 

𝑄 = discharge/flow rate 

 

𝑐𝑑𝑒𝑡= empirical detachment 
coefficient (s m-3 d-1) 

𝑄𝑐𝑟𝑖𝑡 = critical discharge for the onset 
of bed load transport, 40 m3 s-1  

𝑘𝑐𝑎𝑡= 100 d-1, empirical catastrophic 
detachment value 

Uehlinger (1996), Labiod (2007) 

 

Similar approach: Bellmore et al. (2014) 
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Sloughing rate formulations Model parameters References 

S depending on shear stress driven bed 
load transport and sheltering: 

1) 

𝑆 = (24 ∙ 3600)𝛼𝑊𝑥 

where workload of collision between sand 
and substratum cobble is 

𝑊𝑥 =  𝛾𝑞𝐵𝑑𝑠
1/3𝑢∗𝑒

2/3 

And bedload discharge 𝑞𝐵 is approximated 
by 

𝜏∗𝑒 = 𝑓(𝛿)𝜏 =  
𝑓(𝛿)𝑢∗

2

(
𝜎
𝜌

− 1) 𝑔𝑑𝑠

 

where 𝑓(𝛿) = 1 − 𝛿 

and 𝛿 = ∆𝐶/𝑑𝐶  

𝜏∗𝑒 = non-dimensional (effective) tractive 
force 

𝛿 = non-dimensional exposure height of 
cobbles 

𝜎 = density of sand 

𝜌 = density of water 

g = gravitational acceleration 

𝑢∗ = shear velocity, calculated from depth-
averaged velocity, sand roughness 
(depending on water depth, ∆𝑐 , and 𝑑𝑠) 

 

2) Sediment mobility vs. critical flow 
threshold 

𝜏cr𝐷𝑖
= 𝜏cr𝐷50

(
𝐷𝑖

𝐷50
)

1−𝛾

 

𝜏cr𝐷50
= critical shear stress to mobilize 

the median grain size, N m-2 

𝜏cr𝐷50
= 𝜏cr

∗ (𝜌𝑠 − 𝜌)𝑔𝐷50 

𝜏cr
∗ = Shields number 

𝜌 = water density, kg m-3 

𝑔 = gravitational acceleration, m s-2 

𝛼 = “resistant coefficient of algae 
detachment” taken as 1.23x10-4 N-1 m 
for Cladophora glomerata (Kitamura 
et al. 2000) 

𝛾 = cobble material property 
coefficient, 4.94x105 N m-4 s2/3 

∆𝑐 = exposure height of cobble 

𝑑𝑐  = cobble diameter, 10 cm 

𝑑𝑠 = sand diameter, 1 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐷𝑖 = grain size of interest, m 

𝐷50= median grain size, m 

𝛾 = hiding coefficient (dimensionless, 
no hiding 0 → 1 equal mobility across 
size classes) 

𝜌𝑠 = sediment density, kg m-3 

Tsujimoto and Tashiro (2004) and 
references within: 

 

 

 

Skuka et al. (2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hoyle et al. (2017) 
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Sloughing rate formulations Model parameters References 

S depending on shear and fluid forces: 

Ū =  
𝑈∗

𝜅
ln (

𝑦

𝑦0
) + 𝐵 

Ū = riverwise time-averaged velocity at 
depth 𝑦 (cm/s) 

𝑈∗ = shear velocity (cm/s) 

𝜅 = von Karman constant, 0.41 

𝑦 = distance from flume bed (cm) 

𝑦0 = roughness height (cm) 

B = constant 

𝐹𝐷 =  𝜇(𝐹𝐺 + 𝐹𝐶 − 𝐹𝐵 − 𝐹𝐿) 

𝐹𝐷 = forces acting on periphyton along 
mean flow 

𝜇 = tan𝛼 

 

Additional equations for: 

𝐹𝐺  = gravity force 

𝐹𝐶  = periphyton attachment force 

𝐹𝐵 = buoyancy force 

𝐹𝐿 = lift force 

 

Assume drag and lift forces around 
cylindrical filaments, use boundary shear 
stress function based on fluid-velocity 
function and Shields (1936) relationship on 
critical shear stress to mobilize sediments 

𝛼 = angle between bed place and 
periphyton filament 

𝐶𝐷= drag coefficient 

𝜌𝑝= periphyton density 

𝑑 = periphyton diameter 

𝐿 = periphyton filament length 

𝜎𝐶= attachment coefficient 

𝐶𝐿= lift coefficient 

 

 

 

 

 

 

 

Hondzo et al. (2002) 

S depending on shear stress, type of 
attachment and periphyton (several 
equations): 

 

1) detachment condition for 
bottom-attached filaments 

2) detachment condition for 
laterally attached filaments 

3) detachment rate for non-
filamentous periphyton 

 

4) recovery time since last scour 
event 

𝐶𝐷= drag coefficient 

𝑆 = surface area of filamentous cell 

𝑉= biovolume of filamentous cell 

𝐿 = cell filament length 

𝑓 = bottom friction coefficient 

𝐹𝑐𝑟1 𝑎𝑛𝑑 𝐹𝑐𝑟2 = critical threshold 
strengths of filaments 

 

Critical velocities beyond which scour 
is initiated 

 

Asaeda and Son (2001) 

 

 

 

 

 

 

 

 

 

Martin et al. (2014) 

 

 

3.2.4 Mortality and autogenic sloughing M  

Mortality and autogenic or self-induced sloughing (detachment) are not often explicitly modelled, 

because flow-induced sloughing usually implicitly accounts for autogenic sloughing. Nonetheless, as 

periphyton grows dense and senesces, its structural integrity is compromised (e.g., Higgins et al. 

2005, Boulêtreau et al. 2006). Autogenic sloughing occurs when the periphyton mat becomes thick, 

senesces, breaks and detaches. Boulêtreau et al. (2006) incorporated a temperature trigger to 

activate bacteria that enhance the degradation process and sloughing. In their model, the self-

generated detachment rate is a function of the active bacterial density Bb (cells m-2), which is another 
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state variable modelled by a differential equation involving temperature (Arrhenius)-mediated 

growth and a loss term. This autogenic sloughing mechanism introduces additional model complexity 

but was shown to successfully predict two periphyton AFDM peaks, under the condition that the 

flow-mediated sloughing term was retained. It was also used by Graba et al. (2014). 

Table 3-6 Mechanistic model expressions for mortality and autogenic detachment. 

Equation Model parameters References 

Mortality rate: 

𝑀 = 𝑘𝑀,ref 𝜃𝑀
𝑇−𝑇ref𝑋 

𝑇 = water temperature 

𝑋= biomass 

𝑘𝑀,ref = constant 

𝜃𝑀= constant 

𝑇ref= reference temperature, 
usually 20 °C 

Asaeda and Son (2000, 2001), 
Rutherford (2000) 

Temperature and self-generated or 
bacteria triggered detachment: 

𝑀 =  𝑐𝑎𝑢𝑡𝑜𝐵𝑏(𝑋 − 𝑋0) 

𝑑𝐵𝑏

𝑑𝑡
= [𝜇𝐵𝑏𝑒𝛽𝐵𝑏(𝑇−𝑇0𝐵𝑏) − 𝑐′

𝑑𝑒𝑡𝑋]𝐵𝑏 

𝑋 = periphyton biomass (AFDM) 

𝐵𝑏 = active bacterial density 

𝑇 = water temperature 

𝑐𝑎𝑢𝑡𝑜 = self-generated 𝑋 
detachment coefficient 

𝑋0= minimum residual 
biomass 

𝜇𝐵𝑏= bacterial growth rate 

𝛽𝐵𝑏= temperature mediation 
coefficient for bacterial 
growth 

𝑇0𝐵𝑏= reference temperature 
for bacterial growth 

𝑐′
𝑑𝑒𝑡= flow-dependent 𝑋 

detachment rate 

Boulêtreau et al. (2006), Graba et al. 
(2014), Flynn et al. (2013) 
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4 Considerations for mechanistic river periphyton modelling 
Preceding sections focused on the background, motivation, and general, and specific periphyton 

modelling approaches. In section 1, the need for models to support freshwater management with 

respect to periphyton was established. In section 2, benefits and challenges of empirical (statistical) 

and mechanistic (process-based) modelling approaches and foundational mechanistic model forms 

were introduced and compared. In section 3, specific model formulations for periphyton biomass 

growth and loss processes were described. This section describes further mechanistic modelling 

aspects in addition to specific process formulations. 

4.1 Periphyton biomass and in-river nutrient modelling challenges 

Biomass (chlorophyll a, dry mass or ash free dry mass) and water column nutrient concentrations are 

monitoring variables specified in the NPS-FM and are important for calibration and confirmation of 

models. Though regulations and monitoring programs are all based on periphyton biomass, an 

important question should be considered with respect to modelling periphyton with the purpose of 

establishing nutrient management targets to prevent nuisance growth: 

What should the model predict as a response variable (e.g., periphyton biomass, internal or 

external nutrient concentrations, primary production)? 

Water column nutrient concentrations can greatly vary in time and space due to variation in nutrient 

supply and in-river cycling. Nutrient supply is linked to landscape and can vary on the order of hours 

to months, while in-river nutrient variability occurs on the order of hours or days. In winter, soils are 

less capable of retaining nutrients, leading to high nutrient runoff controlling in-river nutrient 

concentrations. In summer, in-river processes often control in-river nutrient concentrations. Biomass 

and water column nutrient concentrations are highly dynamic, which makes the assessment of river 

health challenging. 

Stored nutrient content and net primary production may be better indicators than in-river nutrient 

concentrations and biomass for periphyton nuisance conditions, because they integrate the effects 

of exposure to certain nutrient/grazing conditions over time. It has been suggested that net primary 

production (gross primary production – community respiration) based on dissolved oxygen (DO) may 

be a better means to predict river ecosystem health and trophic state than biomass (net autotrophic 

or heterotrophic, e.g., Bernhardt et al. 2018, Young and Collier 2008, Young et al. 2009). The ratio of 

gross photosynthesis and respiration (GP:R) can be used to functionally describe communities based 

on net metabolism (Odum 1957, Young et al. 2009). 

There is feedback between nutrient concentrations in the water column and periphyton biomass. 

Currently, empirical models developed in New Zealand use annual mean nutrient concentrations to 

predict annual maximum or peak chl a but not vice versa (i.e., relate chl a back to nutrient 

concentrations). Seasonal fluctuations in DIN and DRP can be influenced by in-river uptake by 

periphyton. These models simulate chl a as a function of in-river nutrient concentrations, but in-river 

nutrient concentrations are taken as independent of chl a, a weakness recognised by modellers and 

managers but difficult to resolve. During summer low flows, DIN and DRP concentrations in lower 

reaches of a river are often low, while periphyton biomass is high. As periphyton assimilate nutrients 

(and uptake rates are high), concentrations in the water column are depleted. Regression models 

developed using data from synoptic, paired water quality/periphyton biomass sampling would often 

suggest that high nutrient concentrations could lead to low biomass. Munn et al. (2002) presented a 
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conceptual diagram to describe deviations from expected periphyton biomass vs. nutrient 

concentration trends. Biggs (2000b) avoided this problem by relating annual average DIN and DRP 

concentrations with maximum periphyton biomass. The former is an index of trophic status, while 

the latter is a measure of the worst-case condition response, the one of interest to managers. 

Infrequent spot measurements of water column nutrient concentrations are not necessarily an 

indicator of periphyton biomass or growth potential because they do not always reveal nutrient 

supply over time. Spot measurements are more likely to result in negative or no empirical 

relationships between periphyton biomass and nutrient concentrations, but maximum biomass and 

annual mean nutrient concentrations result in positive empirical relationships (Figure 4-1). 

Mechanistic models can resolve sub-annual biomass estimates, accounting for sub-annual variations 

(e.g., pulses of nutrients coming through the river after a storm). 

 

Figure 4-1: Conceptual model of likely relationship between nutrient concentrations and periphyton 
biomass.   The bright green line is the idealised periphyton growth trajectory. Pale green dashed lines indicate 

deviations from the trajectory under different conditions (four sets of conditions indicated by the grey lines). 
The black dashed line shows the nutrient¬–biomass relationship typically revealed from analyses of periphyton 
over time within sites, or from synoptic surveys of periphyton over a region. Adapted from Munn et al. (2011). 

Rather than focusing on measures of in-river nutrient concentrations, nutrients stored in periphyton 

cells may be considered. Measures of stored nutrient levels (usually measured as grams of nutrient 

per total grams dry mass, expressed in %) in periphyton can indicate growth potential (related to 

growth rate). High stored nutrient content (e.g., 0.50 %P in Cladophora) indicates historic exposure 

to high water column nutrient concentrations, while low stored nutrient content (e.g., 0.05 %P in 

Cladophora) indicates growth limitation (e.g., Kuczynski et al. 2016). A measure of stored nutrient 

content would likely be a better indicator for growth potential than water column nutrient 

concentrations because the variable fluctuates less and integrates the exposure to high water 

column concentrations over time. Stored N and P content is determined by particulate N and P 

analysis on a known mass of periphyton. Given the laborious nature of analysing stored nutrients as 

opposed to in-river dissolved nutrient concentrations and considering that the NPS-FM mandates 

that regional councils set annual median or mean limits for DIN and DRP concentrations, a 

mechanistic model could relate stored N and P content back to mean water column N and P 

concentrations (e.g., for P, Figure 8a in Tomlinson et al. 2010). This approach should be further 

explored. 
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4.2 Model resolution 

Ultimately, the acceptability of a mechanistic model fit depends on the case-specific question to be 

answered. In addition to model parameter definition, model resolution is important. Existing 

periphyton models have a spatial resolution at the river reach scale due to observational data 

availability and representativeness. Periphyton growth in rivers tends to be patchy (from one m2 to 

another m2 in one reach) and small-scale heterogeneities are difficult if not impossible to resolve in a 

model. Periphyton biomass is usually quantified based on the average of ~10 small samples (Biggs 

and Kilroy 2000), which may not be representative of the sampled river reach (see Kilroy et al. 2013 

on representativeness and number of samples). The mechanistic model developed by Uehlinger et al. 

(1996) simulates periphyton biomass along a deterministic trajectory in a river reach of 2 km and 

heterogeneities cannot be accounted for (Uehlinger et al. 1996). A spatial scale recommendation of 1 

km2 for hydrological simulations is recommended by Janssen et al. (2019) as part of their ideal algal 

prediction model, which focuses on lakes but also includes rivers in the hydrological network. 

Most periphyton models simulate biomass at a daily time interval. This is an appropriate temporal 

scale on which changes in biomass can be observed in situ and monitoring data can be obtained. 

Rutherford et al. (2018) recommend a daily-weekly time step because biomass changes at the sub-

daily scale are not only difficult to model but are difficult to confidently measure in the field (Kilroy et 

al. 2013). Furthermore, diurnal, hourly or sub-hourly changes in flow, water column nutrient 

concentrations, DO, and pH can affect nutrient cycling (e.g., DO affects denitrification and pH affects 

P adsorption to sediments) and in turn biomass. This means that sub-daily processes cannot always 

be dismissed and should be modelled at the hourly scale to produce daily biomass estimates. A daily 

time step is advisable. 

The level of kinetic (ecosystem process rate) resolution required can be more difficult to determine. 

Details concerning the level of nutrient cycling, periphyton composition, grazers and potentially 

higher trophic levels must be selected with the goal of achieving an appropriate balance between 

model simplicity and complexity, reflected in uncertainty and computational time. When both N and 

P are modelled, choices must be made in terms of representing their bioavailable fractions and 

cycling between different forms. For example, dissolved reactive P is considered ~100% bioavailable, 

while the dissolved organic and particulate fractions vary in their bioavailability. Similarly, different 

forms of N are more or less bioavailable for algal uptake. When periphyton grows beyond a thin layer 

of cells into a thick mat, internal recycling processes within the mat may alter periphyton growth 

rates beyond the influence of nutrient supplies from the water column (Mulholland and Webster 

2010). In short, the more nutrient pools (state variables) are included in a model, the more transfer 

rate coefficients must be defined, and the uncertainty of model predictions increases with the 

number of model parameters. 

To choose appropriate state variables and model processes, their relative importance must be 

tested. For example, Bellmore et al. (2014) investigated top-down control of periphyton by higher 

trophic levels. In some situations, salmon can enhance periphyton growth via nutrient supply and in 

other situations, spawning activity disturbing the river bed can impede periphyton growth (Bellmore 

et al. 2014). But how important is the role of salmon with respect to periphyton growth? Based on 

model simulations, the authors found that “salmon did not greatly increase or decrease overall 

annual periphyton production.” In this case, incorporation of high tropic level organisms (salmon) 

was not required to improve predictive capability. 
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4.3 Model evaluation 
Model simplicity and complexity must be balanced to reach an appropriate level of accuracy and 

precision for answering the question at hand. Accurate river periphyton biomass predictions are 

difficult to make as chl a cannot be measured with high precision (Kilroy et al. 2013), but to set 

nutrient targets, model estimates of biomass should be comparable to observations in magnitude 

and timing of peak biomass during an accrual cycle. In the spirit of Occam’s razor and a quote 

attributed to Einstein, “everything should be made as simple as possible, but no simpler,” the 

challenge lies in achieving the required model reliability while minimizing costs (Chapra 2008) in data 

collection, uncertainty, and computing time. A reliable mechanistic model stands on 1) sound 

physical and biogeochemical principles/formulations and usually on 2) confirmation model runs that 

produce accurate predictions compared to observational data. Assessing model agreement with 

observational data is the standard means of calibrating and confirming a model. During this process, 

managers should focus on a model’s ability to predict the relative direction and magnitude of change 

of the response variable (e.g., biomass) with respect to perturbation rather than its ability to produce 

precise output values at any point in time or space in a given river. 

4.3.1 Goodness of fit 

Models are generally calibrated (i.e., tuning coefficients/model parameters are determined) with one 

dataset and confirmed or validated using the same set of parameters with another, independent 

data set. Models are calibrated using in situ and/or experimental data that are as representative as 

possible of the conditions to be modelled (i.e., site, species, forcing conditions). Unfortunately, this 

requires system-specific definitions of parameters such as the sloughing (detachment) rate, critical 

flow, and gross specific growth rate (Uehlinger et al. 1996). Empirical model parameters are generally 

defined using optimization methods (e.g., maximum likelihood or least squares). Few empirical and 

mechanistic models have prediction errors under 30% and can reach well beyond 100% (Reckhow 

and Chapra 1999). Basic methods for assessing error propagation are Monte Carlo simulation and 

first order error analysis (Reckhow and Chapra 1999, Hornberger and Spear 1980, Spear and 

Hornberger 1980). 

Various statistical methods are commonly used to evaluate mechanistic model performance or the 

goodness of fit of model output to observational (measured) data: e.g., the coefficient of 

determination (r2), the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), the 

normalized unbiased root mean square difference (NRMSD), and Pearson’s chi-squared test (e.g., 

Uehlinger et al. 1996, Graba et al. 2014). Non-steady state systems can be evaluated by deterministic 

stability analysis, which uses one or several eigenvalues of the Jacobian, i.e., characteristic values 

that are sets of model parameter solutions (Saravia et al. 1998, Chapra 2006, Chapra 2012). The 

Akaike Information Criterion (AIC) is a statistical means of comparing models to aid in selecting a 

model based on the trade-off between model accuracy or goodness of fit and model simplicity; for 

example, Boulêtreau et al. (2007) used the AIC to identify an appropriate minimalist model for 

predicting river epilithon biomass. These methods compare model output with observations but are 

not necessarily a measure of a model’s ability to predict change. For these statistical methods of 

assessing model performance to be useful, a model must be tested using distinctly different 

conditions (environmental forcing conditions, nutrient loadings), which requires observational data 

(e.g., dry and wet weather conditions). 
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4.3.2 Sensitivity and uncertainty 

Beyond parameter estimation, there is uncertainty in observational data/measurements, setting 

initial and boundary conditions, process definition, model structure, scenario choice, and numerical 

approximation; some of the uncertainty is propagated to model predictions and some is not (Dietze 

2017). The accuracy and precision of model output heavily depends on that of measured input 

forcing conditions (e.g., light intensity, water temperature, and water column nutrient 

concentrations) and calibration data (periphyton biomass and/or other state variables). In addition, 

the amount and quality of available data (forcing conditions and response variables) for model 

confirmation tends to be limited. However, new technology can aid in improving the accuracy, 

precision, and frequency of physical, biological, and chemical data collection. 

A sensitivity analysis serves to identify the model parameter(s) with the greatest influence on model 

output. The modelling paradigm “Garbage in → garbage out” and vice versa “High quality input → 

high quality output” holds. The result of a sensitivity analysis allows a model user to focus on defining 

the model parameters that have the greatest effect on model output, because the higher the 

confidence in the model parameter, the higher the confidence in model output. 

Large mechanistic environmental models are often overparameterized due to 1) high structural 

complexity that seeks to account for process understanding and 2) data limitation for calibration and 

confirmation; i.e., calibration does not result in a unique set of parameters. Brun et al. (2001) 

describe two approaches to tackle the parameter identifiability problem of large models and select a 

parameter set based on model sensitivity to single parameters (via parameter importance indices) 

and to parameter subsets (via a collinearity index). Rutherford et al. (2018) emphasize that 

overparameterization does not necessarily make a model unsuitable for informing management and 

that “even with a paucity of data and high uncertainty, it is possible to support decision makers.” 

4.4 Data needs for modelling 
The greater the input of experimental results and field measurements, the better models can be 

parameterised, calibrated, and confirmed. Intuitively, more data must lead to better models; 

however, the design of experimental and field work is critical. A periphyton model can only be as 

good as the data which inform it, i.e., forcing conditions and data-derived parameters. 

River periphyton biomass models are intended to serve managers (e.g., regional councils and MfE) in 

setting periphyton targets and guidelines to protect ecosystem and human health in the face of 

changes in land cover and land use. New Zealand water quality regulations (NPS-FM) are based on 

monthly periphyton biomass and nutrient concentration measurements in runs, which are more 

prevalent in rivers than riffles and pools, although high turbulent dispersion and associated nutrient 

delivery in riffles can support high periphyton biomass. 

Model parameterisation requires information that can only be obtained from highly controlled 

experiments that minimize the number of system variables. As emphasized in a review by Larned 

(2010), many published results come from studies of periphyton responses to multiple variables, 

from which temporal and spatial patterns are inferred but mechanisms are rarely identified. Results 

from highly controlled experiments, however, can be used to describe mechanistic responses. For 

example, Graham et al. (1982) performed a suite of Cladophora growth laboratory experiments 

resulting in a matrix response to gradients of light and temperature; these results have been used to 

derive unitless light/temperature response functions that mediate maximum growth and respiration 

(Tomlinson et al. 2010). The absolute growth and respiration rates (grams dry mass produced per 
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grams dry mass per day) measured in these experiments do not accurately represent natural 

ecological responses, but the relative response was identified, normalized, and applied to site- or 

system-specific maximum growth and respiration rates. Similarly, extensive experimental work has 

been conducted using chamber (respirometer) and flume experiments (e.g., Biggs and Close 1985, 

Biggs 1995, Quinn et al. 1997, Matheson et al. 2012b), providing invaluable structural information 

and data for modelling nutrient-periphyton dynamics. 

While experimental results are import for model parameterisation, field measurements are critical 

for model calibration and confirmation. Model calibration is the process of choosing model 

parameters that result in model predictions that agree with measurements of the response variable 

(periphyton biomass) as well as possible, i.e., tuning the model. Model confirmation is the process of 

running the model with the same set of calibrated parameters with a different set of forcing 

conditions, e.g., for a different time, and comparing the model output with measurements. The NPS-

FM (2017) mandates monthly periphyton chl a monitoring. This temporal resolution (monthly) is 

coarse and cannot capture periphyton accrual periods, which can range from a few days to several 

weeks. Monthly data can still be used for model calibration but the input data (environmental forcing 

conditions) and calibration data (periphyton biomass) are often not reliable enough to achieve a 

satisfactory model calibration. 

Uehlinger et al. (1996) suggested a minimum of 18 months of weekly biomass sampling per river to 

inform parameter estimation. While cost- and time-intensive, such a biomass sampling regime along 

with other measurements, depending on the processes simulated in the model, could be used as 

input forcing conditions for calibration and confirmation of a river-specific mechanistic model. For 

several models, those additional measurements should ideally include bookend forcing conditions for 

macronutrient concentrations and physical characteristics: concentrations of N and P forms, flow, 

velocity, light, temperature, and substrate (grain size distribution) on several sites along a river. New 

technologies such as near field remote sensing and automated in river nitrogen sensors are being 

developed and tested to achieve high resolution flow, periphyton, and nutrient concentration data. 

More efficient periphyton monitoring methods are in development and could be used to collect 

model input, calibration, and confirmation data. For example, remote sensing methods using aerial 

imagery to monitor periphyton hold promise for estimating algal coverage, biomass, and type (e.g., 

filamentous green, thin film, Didymosphenia geminata). For model calibration and confirmation, 

aerial imagery obtained using drones can greatly enhance spatial resolution, while stationary camera 

deployments can improve temporal resolution. Multispectral imagery can assist in distinguishing 

between algal types. Remote sensing techniques hold promise for collecting continuous flow, 

substrate, and nutrient data. 

4.5 Lessons from lake models 

Lake water quality modelling with the purpose of managing eutrophication began with an empirical 

regression model relating phosphorus loading to phytoplankton chlorophyll a (Vollenweider 1968, 

1975). Since then, empirical and more so mechanistic models have been developed and applied to 

manage lake eutrophication all over the world, including New Zealand (e.g., Trolle et al. 2014). Most 

of those water quality models focus on predicting nutrient cycling but some also include suspended 

algal blooms, i.e., phytoplankton, rather than attached biomass, i.e., periphyton or benthic algae 

(e.g., Delft3D-WAQ/ECO/BLOOM in the DeltaShell framework, ELCOM-CAEDYM, DRAINMOD, ECM, 

EwE, GLM, LakeWeb, MIKE 11, MyLake, NiRReLa, PCLake, PROTECH, QUAL2E, SIMCAT, TOPMODEL, 

WQRRS). Several process-based lake models have been used to predict periphyton biomass, notably 



 

Modelling periphyton in New Zealand rivers  37 

 

efforts to predict benthic nuisance algal growth in the Laurentian Great Lakes (Great Lakes 

Cladophora Model – Auer et al. 1982, Tomlinson et al. 2010; Cladophora Growth Model – Higgins et 

al. 2005, Malkin et al. 2008). In lakes, residence times determine whether biogeochemical or physical 

processes drive ecosystem dynamics (Janssen et al. 2019); similarly, in rivers, water velocity and 

periphyton mat thickness determine the efficiency of nutrient delivery. Several other mechanisms 

(e.g., self-shading, respiration, and sloughing due to shear stress) that are used to simulate 

periphyton growth in lentic systems are transferable to lotic ones. 

In a review paper, Mooij et al. (2010) identify two main challenges in future lake ecosystem 

modelling: 1) to avoid “reinventing the wheel” from the bottom up, given that many capable models 

already exist, and 2) to avoid “tunnel vision” by focusing on one model rather than employing several 

different models in an ensemble fashion to arrive at conclusions. This perspective is also appropriate 

with respect to water quality modelling in rivers. Both empirical and mechanistic modelling 

approaches come with advantages and disadvantages; thus, an ensemble approach that employs 

multiple models can ultimately improve confidence via converging predictions. One example of 

ensemble modelling for lake water quality is the work that was completed by an international task 

team addressing Annex 4 (Nutrients) of the Great Lakes Water Quality Agreement (IJC 2012), where 

both empirical and mechanistic models were applied to set new phosphorus loading targets for Lake 

Erie (Annex 4 Objectives and Targets Task Team 2015) in North America. Connecting models is 

becoming the standard for good practice in lake modelling in New Zealand as well (e.g., ELCOM–

CAEDYM links lake hydrodynamics and water quality, Trolle et al. 2014). Models are linked when 

models are run in series, where one model produces output that serves as one-time input for 

another model; this is also referred to as running several models “off-line”. Models are coupled when 

several models are run in parallel, producing output that serves as new input across models at each 

time step; this is also referred to as running several models “on-line”.  

Further, an open source modelling platform for lake and river modellers would enable more rapid 

testing, parameterisation, and development of lake and river water quality models across spatial and 

temporal scales. The atmospheric and ocean modelling communities have already been actively 

collaborating via online platforms to testing and improve large environmental models (e.g., the 

GEOS-Chem global atmospheric and FVCOM ocean models). Similarly, a large community of 

researchers across the world recently published results from a study in which the General Lake 

Model (GLM) was applied to 32 lakes across the world and rigorously tested (Bruce et al. 2018, 

through the Global Lake Ecological Observatory Network, www.gleon.org). To the best of my 

knowledge, no such large collaboration exists for river water quality modelling, much less with a 

specific focus on predicting river periphyton. 

http://www.gleon.org/
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5 Conclusions and recommendations 
The main purpose of a river periphyton model for New Zealand is to serve as a tool to simulate 

different environmental scenarios and predict the corresponding periphyton response (biomass). 

Model predictions will serve to set nutrient criteria to meet biomass targets. Mechanistic models can 

help identify drivers to be targeted for management in specific situations and, though they may also 

require case-specific calibration, they are more transferable than empirical models. Mechanistic 

models can take more investment to develop and test, but the potential benefits for environmental 

management and natural resource use are significant. 

The best mechanistic models are parameterized, calibrated, and confirmed using high quality, high 

quantity observational data; the best empirical models are also based on high quality, high quantity 

data and at least some process understanding. It is important to recognise the main limitations of 

mechanistic models but also embrace the future of predictive modelling based on improved data 

availability and quality (Reckhow and Chapra 1999). Mechanistic models are often data-limited with 

respect to parameter selection. Often, expert judgment or literature values (e.g., Bowie et al. 1985) 

are applied even when those values are site-specific and inappropriate for a given case. This is not 

only a common issue in mechanistic periphyton modelling (e.g., also in stormwater quality modelling; 

Al-Amin and Bdul-Aziz 2013). At least two publications have summarised commonly used model 

coefficient ranges (Horner et al. 1983, Benedini and Tsakiris 2013), but those summaries are either 

outdated or incomplete. 

To inform nation-wide river periphyton management using mechanistic models, I recommend the 

following: 

1) Identify several high priority rivers with distinct characteristics (geomorphology, nutrient 

concentrations, flows, temperature, light conditions/shading, etc.). 

2) Using the high priority rivers identified in step 1), develop, calibrate, and confirm river-

specific mechanistic periphyton models based on the parsimonious river model (Chapra et al. 

2014). Steps for developing a mechanistic periphyton model are outlined in Appendix B. To 

improve site-specific river periphyton modelling, I recommend focusing on the following: 

a. Collecting high resolution data (hydraulics, temperature, light, nutrients, periphyton) 

using cutting-edge technology such as remote sensing to support model calibration, 

confirmation, and data assimilation; and 

b. Better defining physical and biological periphyton processes (esp. nutrient delivery 

and uptake, biological senescence, and physical detachment) by performing 

laboratory and in situ experiments at the species or periphyton community level. 

3) Apply the calibrated and confirmed, river-specific models to rivers with similar 

characteristics. Recalibrate the models as necessary. Create a look-up table of tested ranges 

of parameter values for specific river classes. The parameter tables should be readily 

available to every periphyton modeller and routinely updated so that models can be 

judiciously applied with an adaptive management approach. 

4) Simulate a suite of possible temporally variable hydraulic, nutrient, light, and temperature 

conditions for a river of interest. Using the results, develop river-specific stressor–receptor 

response curves (periphyton biomass vs. steady state in-river nutrient concentration). Those 

curves can then be used to define site-specific nutrient criteria to meet periphyton biomass 
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targets in endpoint (extreme) conditions. The main limitation of this approach is that it sets 

criteria for steady-state conditions. 

Finally, it must be recognised that periphyton modelling is but one piece of a large puzzle. The 

performance and reliability of any periphyton model highly depends on the quality of data describing 

environmental forcing conditions, which are often the output of other physical and biological 

models. To accommodate temporal and spatial variation those conditions, a periphyton model 

should be coupled (run simultaneously/in parallel) or linked (run sequentially/in series) with another 

or several other models that simulate physical conditions (atmospheric conditions, catchment 

processes, hydrodynamics) and ecosystem processes that affect periphyton (e.g., nutrient cycling and 

phytoplankton/grazers/higher trophic levels). Both ensemble modelling (running different models 

independently) and connecting models is becoming increasingly common across the world, including 

New Zealand. The linkage of atmospheric, catchment, hydrodynamic, sediment transport, nutrient, 

and multi-trophic level ecosystem and social/economic models remains challenging but must be 

advanced to capture system responses to natural and anthropogenic perturbation and inform 

management decisions. 

An example of coupled natural and human system modelling, Cobourn et al. (2018) linked several 

cross-disciplinary models to capture human and natural systems: 1) agricultural land-management 

decisions, 2) terrestrial nutrient cycling, 3) hydrologic-solute transport through catchments and 

rivers, 4) aquatic nutrient cycling to simulate water clarity, anoxia, and cyanobacterial blooms in 

lakes, 5) residential property values, and 6) civic engagement. The application of such a model 

mosaic may require inclusion of a periphyton model in 3), if periphyton mediate nutrient 

concentrations in rivers, which affect 4) and 5). Assuming that catchment modelling will not provide 

daily time series of nutrient loads to rivers in the near future, in the meantime, management 

decisions have to be made based on assumed steady-state conditions. 

This report is intended to serve as a living document for collating information on mechanistic river 

periphyton modelling and to lay a foundation for future work on predicting periphyton responses to 

anthropogenically and naturally induced environmental changes. 
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Appendix A Mechanistic river periphyton models 

Table A-1: Overview of mechanistic river periphyton models from simplest to most complex.   Models are grouped into simple models (red), models driven by prescribed 
environmental conditions (yellow), models featuring some spatial resolution and nutrient cycling (green), complex models (blue), and case-specific models (no colour). Table A-1 is 
a companion table in Appendix A that summarises further technical details about each model. 

Model Notes  Research Application 
Examples 

Management Application 
Examples 

Model Benefits Model Limitations References and Access 
(free/proprietary) 

Logistic growth 
model and variations 

 

Tested on various 
periphyton types and 
monitoring data for Lake 
Vechten (Netherlands), Lake 
240 (ON, Canada), Hortus 
Botanicus ditches 
(Netherlands), Lake 
Jyvasjarvi (Finland), Oak 
Creek (AZ, USA), 
experimental trough 
(Yellowstone N.P., USA), 
Gwendoline Lake (BC, 
Canada), Yahagi River 
(Japan) 

  - simple, not computationally 
demanding 

- can be modified/enhanced 

- does not explain biomass 
fluctuations 
- site-specific max growth rate 
and max carrying capacity terms 
- assumes negligible grazing and 
sloughing 
- does not include light, temp. or 
nutrient limitation 
- min initial biomass 

Bothwell (1988), Rodriguez (1987), 
Ateia et al. (2016), Tsujimoto and 
Tashiro (2004), Momo (1995) 

 

Free access (equations) 

McIntire/Uehlinger 
river model 

- 4th order Runge-
Kutta method 

 

Spokane River (WA, USA), 
Oregon rivers (USA), Necker 
River (Switzerland), 
Garonne River (France), 
Agüera River (Spain), Natori 
River (Japan), Yahangi River 
(Japan) 

 - accommodates need for 
different coefficients for different 
algal assemblages 
- uses velocity for nutrient 
delivery through laminar sublayer 
and for shear stress 
- algal detachment as function of 
friction velocity rather than flow 
- some versions include grazing, 
mat buoyancy, algal succession 

 

- 11 empirical parameters 
- model sensitivity to uptake 
parameters 
- not spatially resolved 
- neglects velocity effect on 
uptake 
- must know light extinction 
coefficient through different 
types of mats 
- does not explicitly account for 
nutrient uptake on 
concentration of limiting 
nutrient 
- Uehlinger model requires 
specification of recolonization 
rate or residual algal biomass 
after a flood 
- does not simulate grazer-algae-
flow interactions 

McIntire (1973), McIntire and Colby 
(1978), Uehlinger et al. (1996), 
Saravia et al. (1998), Fothi (2003), 
Toda et al. (2005), Boulêtreau et al. 
(2006, 2008), Labiod et al. (2007), 
Graba et al. (2014), Kazama and 
Watanabe (2018) 
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Model Notes  Research Application 
Examples 

Management Application 
Examples 

Model Benefits Model Limitations References and Access 
(free/proprietary) 

Horner model “empirical dynamic 
periphyton model”, 
1 epilithic algal 
group (diatoms) and 
1 grazer group (snail 
Juga) 

Oregon rivers none because "not 
sufficiently developed for 
predictive use in 
management" 

- includes current velocity as a 
variable in continuous time 
equations 

- 1 calibration parameter varies 
linearly with P (not 
mechanistically defined) 
- predictions were high at 
velocities < 15 cm/s 
- does not explicitly account for 
nutrient uptake on 
concentration of limiting 
nutrient 

Horner et al. (1978, 1983), (McIntire 
and Colby 1978), Welch et al. (1989) 

 

Hornberger and 
Spear model 

Models Cladophora 
biomass as P 

Murray River, Peel Inlet, 
Australia 

 - simple P budget model 
including P in Cladophora, 
phytoplankton, sediments, 
groundwater, and water column 

- application of Monte Carlo 
methods to assess parameters 

- 19 calibration parameters Hornberger and Spear (1980), Spear 
and Hornberger (1980) 

Parsimonious River 
Model, Lateral 
Cladophora River 
Model 

- assumes 1D, plug 
flow, spatially 
uniform, temporally 
steady state 

- Montana (USA) example 
application to determine 
nutrient criteria and TMDL 
wasteload allocation 
- Yellowstone River, eastern 
Montana (USA) 

  - simplicity, fixed stoichiometry 
- accounts for N and P uptake 
and bioavailable rather than total 
N and P 
- distributes biomass 
downstream of nutrient sources 
- agrees with Bothwell (1989) 
model prediction if Bothwell's 
log-linear model is replaced with 
Michaelis-Menten P limitation 

- grazing is part of 
death/sloughing term 
- unrealistic fixed stoichiometry 
- assumes steady state 
conditions 
- not calibrated/validated 
because no appropriate data 
sets were available 
- does not account for nutrient 
delivery limitation related to 
hydraulics 

Chapra et al. (2014) and Flynn et al. 
(2013), based on Thomann and 
Mueller (1987) but includes nutrient 
uptake 

SAL1 (Stream 
ALgorithm 1) 

1 functional group 
of diatoms, 1 group 
of grazers (mayflies) 

Hill country rivers at 
Whatawhata (New Zealand) 

  - light, temperature, nutrient, 
grazing, water velocity effects 
modelled 

- does not explicitly account for 
nutrient uptake on 
concentration of limiting 
nutrient 

Rutherford et al. (2000) 
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Model Notes  Research Application 
Examples 

Management Application 
Examples 

Model Benefits Model Limitations References and Access 
(free/proprietary) 

Tukituki River Model 
(TRIM) 

2 submodels: 
hydraulic and 
nutrient-biomass 

Tukituki River (North Island, 
New Zealand) 

  - predicts biomass and nutrient 
peaks timing and order of 
magnitude 
- includes several nutrient cycling 
processes 
- can turn P exchange with 
sediments on/off and test effect 
on water column concentrations 
- handles 827 river segments (all 
4th order or higher) 

- uncertainty in calibration 
parameters 
- no stored P or Droop kinetics 
- assumes straight, uniform river 
segments 
- phytoplankton not included 
- cannot resolve sub-daily 
changes 
- assumes DON = PN = (TN - 
NNN)/2 and DOP = PP = (TP-
DRP)/2 
- site-specific calibration 
- assumes fixed internal nutrient 
stoichiometry and C:N and C:P 
ratios 
- nutrients are trated as 
conservative 
- hard-wired biomass reseeding 
after flood 
- highly dependent on annual 
input nutrient concentrations 
transformed into daily (driven 
by OVERSEER) 
- assumes worst case scenario 
(no denitrification) 
- poor DRP prediction 
- not enough data for validation 

Rutherford (2011a,b, 2012, 2013a,b) 

 

Proprietary access (NIWA) 

ISOFLOC (Isotope-
based Fluvial Organic 
Carbon) Model 

→ based on SAL 1 

- mass balance C 
isotope 
fractionation model 
- C cycling in water 
column and 
sediments, 
sediment transport, 
hydrology 
- Suggests that 
shielding and burial 
during spates 

Kentucky River Basin (South 
Elkhorn, KY, USA) 

  - model captures event, seasonal, 
and annual trends 
- sloughing driven by shear stress 
- simulates algal biomass export 
after detachment 

- assumes algae are neutrally 
buoyant 
- most sensitive calibration 
parameters are benthic rates: 
algal growth, critical shear stress 
of algae, algal decomposition 
- does not include rate limiting 
nutrient conditions 
- rates must be calibrated for 
forested, urban and agricultural 
systems 

Ford and Fox (2015), Ford and Fox 
(2014) 
 
rate values taken from Rutherford 
(2000), Flynn et al. (2013) 
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Model Notes  Research Application 
Examples 

Management Application 
Examples 

Model Benefits Model Limitations References and Access 
(free/proprietary) 

enhances algal 
stabilization 

TRANSFER 
(Technology for 
Removable Annual 
Nitrogen in Streams 
For Ecosystem 
Restoration) 

- focus on N cycling 
- based on ISOFLOC 

Kentucky River Basin (South 
Elkhorn, KY, USA) 

  - focus on N cycling 
(denitrification and N spiralling) 

- only applicable in non rate-
limiting nutrient conditions (i.e., 
in nutrient-rich urban and 
agricultural systems) 

Ford and Fox (2017b) 

AQUATOX - eutrophication and 
contaminant fate 
and transport 
model 
- began with CLEAN 
model (Park et al. 
1974) 
- 4th and 5th order 
Runge-Kutta 
integration 

Pearl River (LA, USA), Blue 
Earth River, Rum River, 
Crow Wing River (MN, USA), 
Cahaba River (AL, USA), 
other places in the U.S. 

- available in 
Environmental Protection 
Agency's (EPA's) Better 
Assessment Science 
Integrating point and 
Non=point Sources 
(BASINS) platform 
- used to develop Total 
Maximum Daily Loads 
(TMDLs) under U.S. Clean 
Water Act 
- assessment of effect of 
P, TSS, and N levels on 
benthic chl a 
- determining nutrient 
criteria (Carleton et al. 
2009) 
- periphyton and 
zoobenthos in 
experimental rivers in 
France 

- user-friendly 
- does not require much input 
data 
- compatible with watershed 
models HSPF and SWAT to 
incorporate land use N and P 
loadings 
- periphyton submodel calibrated 
across 20 experiments (EPA, 
2000) 
- includes sediment diagenesis 
model for remineralization (Di 
Toro 2001) 
- peer reviewed by external panel 
convened by U.S. EPA 
- extensive parameter library 
included 
- can model up to 20 organic 
chemicals simultaneously 

- C cycling based on theory for 
slow moving water 
- need more monitoring data 
(algal biomass) to confirm model 
calibration parameters 
- cannot model metals 

https://ww.epa.gov/ceam/aquatox 
U.S. EPA (2000) 
- sediment model DiToro (2001) 

- WASP 6 Wool et al. (2006) 

Joyner and Rohli (2013), Carleton et 
al. (2009), Park et al. (1995, 2008), 
Rashleigh (2003) 

 

Free access 
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Model Notes  Research Application 
Examples 

Management Application 
Examples 

Model Benefits Model Limitations References and Access 
(free/proprietary) 

QUAL2K (River and 
Stream Water Quality 
Model), AT2K, 
QUAL2Kw 

- widely-used, chl a 
in rivers 
- 1D steady state 
flow 

Lis River, Portugal   - includes a genetic algorithm for 
model calibration 

- hydraulic removal mechanisms 
not included 
- assumes fixed internal nutrient 
stoichiometry 
- input data requirements 

Pelletier et al. (2006), Pelletier and 
Chapra (2005), Chapra et al. (2008), 
reviewed by Cox (2003), Flynn et al. 
(2015), Vieira et al. (2013), Tsakiris 
and Alexakis (2012) 

 

Free access 

CE-QUAL-ICM and 
CE-QUAL-W2 

    U.S. Army Corps of 
Engineers 

 

- complex, lots of data 
requirements 

Cerco and Cole (1994), Rounds and 
Wood (2001) 

 

Free access 

Water Quality 
Analysis Simulation 
Program (WASP) 

- Cerucci et al. 
(2010) tested Droop 
vs. Monod kinetics 

Raritan River Basin (NJ, USA) EPA   - does not consider hydraulic 
removal mechanisms 

Park and Clough (2012), Ambrose et 
al. (2006), Cerucci et al. (2010), 
Martin et al. (WASP8), Wool et al. 
(WASP6, 2006), Kish et al. (WASP5) 

 

Free access 

RWQM, RWQM1 
based on activated 
sludge models ASM1, 
ASM2, ASM3 (Henze 
et al. 2000) and 
QUAL2E (Brown and 
Barnwell 1987) 

River Water Quality 
Model, based on 
AQUASIM biofilm 
model (Wanner and 
Reichert 1996) 

- DIN in Crocodile River, 
South Africa 

 - can turn off lots of mechanisms 
to simplify model 
- more refined than QUAL2E, 
based on COD similar to 
Activated Sludge Models (ASM-1, 
ASM-2, ASM-3) 
- Model parameters include C, H, 
O, N, P fractions 
- Monod kinetics 

- constant stoichiometry (C, H, 
O, N, P) 
- no changes in organism 
composition 
- assumes NO3 is always 
available 
- complex, many state variables 
- requires a lot of input data 
- Crocodile River model most 
sensitive to microbial biomass 
and hydraulic parameters, 
complicated periphyton 
treatment like a porous matrix, 
hard to upscale to a reach 

Reichert et al. (2001), Deksissa et al. 
(2004), Debele et al. (2009), Van 
Griensven (2002) 

 

 

Deltares modelling 
suite with 
1) hydrodynamic 
model Delft3D 
Flexible Mesh 

Standalone 
software for 
purchase 

- structured grid 
model 

San Francisco Bay (CA, USA), 
Rhine River (Germany) 

 - high spatial (1D, 2D, 3D) and 
temporal resolution, can be 
applied for to rivers, lakes, and 
estuaries 

- includes sediment dynamics 

- not yet well developed for 
periphyton but has capability 

 

 

Delft3D FM: Deltares (2015, 2017), 
Yossef et al. (2008), Li (2009), Los 
(2009, ch. 7) 

 

DELWAQ: van Gerven et al. (2015) 
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Model Notes  Research Application 
Examples 

Management Application 
Examples 

Model Benefits Model Limitations References and Access 
(free/proprietary) 

(Delft3D FM, 
succeeds Delft3D 4, 
SOBEK 2) 

2) water quality 
model framework: 
DELWAQ (Delft 
Water Quality) 

- includes water 
quality modelling 
options for 
periphyton 
(DELWAQ, BLOOM) 

- physical model has already 
been applied and tested across 
the world, especially in estuaries 

- user-friendly platform (GUI), 
allows for linking other models 

- DELWAQ process library and 
routines available 

Proprietary 

Buzzelli Everglades 
N.P. model 

Focuses on TP effect 
on periphyton 

Shark Slough, Everglades 
NP, FL, USA 

Applied along with flume 
experiments to establish 
P criteria for freshwater in 
the Everglades (Childers 
et al. 1999) 

- accounts for P recycling 
(feedback from “periphyton P 
detrital production”) 
- captured correct magnitude of 
max biomass 

- timing of peak biomass was not 
well simulated 
- sensitivity to TP half-saturation 
constant 
- "Everglades periphyton 
simulations will not be overly 
realistic if they follow simple 
Michaelis-Menten uptake 
kinetics, over-aggregate state 
variables of the periphyton 
complex, and fail to account for 
changes in the community 
composition and pH under P 
enrichment." 

Buzzelli et al. (2000) 

Transient storage 
zone (TSZ) model 

2 zones: free-
flowing water and 
transient storage 
zone in the water 
column 
Focus on nitrogen 
cycling 

Walker Branch, Oak Ridge 
Reservation, Tennessee, 
USA 

  - successfully simulates nutrient 
assimilation into biomass via 
adjusted Monod expression and 
a self-limiting carrying capacity 
term 
- nutrient movement is 
bidirectional between zones 
(except labile organic N cannot 
leave sediments) 

- assumes constant transient 
storage zone and periphyton are 
only found here 
- assumes steady state 
conditions and each zone is well 
mixed 
- no available TSZ nutrient 
measurements for validation 
- poorly defined sediment-water 
nutrient exchange 
- not spatially explicit 

DeAngelis et al. (1995) 
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Model Notes  Research Application 
Examples 

Management Application 
Examples 

Model Benefits Model Limitations References and Access 
(free/proprietary) 

Surface-subsurface 
exchange model 
(extended TSZ 
model) 

- based on TSZ 
model 
- effects of nutrient 
transformations in 
sediments on water 
column and 
periphyton 
- 3 zones: free-
flowing water, 
surface storage 
zone, subsurface 
zone 

Sycamore Creek, Arizona, 
USA (N-limited desert river) 

  - tested at steady state and flood 
conditions 
- demonstrates importance of 
subsurface nutrient recycling (in 
this case) 
- identifies importance of 
measuring labile organic N 

- many different nutrient pools 
(fairly complex nutrient kinetics) 
- TSZ-free water exchange rates 
may vary a lot 
- all parameters were kept 
constant during post-flood 
recovery but would vary in 
reality 
- hydrologic connection btw. 
Hyporheic zone and algal mat 
(nutrients move from sediments 
into TSZ without uptake by 
periphyton, likely unrealistic) 

Dent and Henry (1999) 

Periphyton model 
added to ProSe, 
based on RIVE model 
(Billen et al. 1994) 

Hydro-biological 
river model: RIVE 
model for C, 
nutrients and O is 
coupled with 
hydrodynamics and 
a periphyton 
module 

Grand Morin (5th order river 
in France) 

  Focus on biogeochemical cycling, 
includes 3 water column chl a 
groups (diatoms, chlorophycae, 
detached benthic algae) 

- no stored nutrient effects 
considered 
- calibration coefficients 
- model complexity with two 
bacterial groups and periphyton 
and P, N, and O cycling 

Flipo et al. (2004), Even et al. (1998) 

Vertical stream 
periphyton biomass 
accumulation model 

- filamentous and 
non-filamentous 
algae 
- focus on mat 
thickness and 
structure as f(flow) 

Calibrated using results 
from experiments with 
Achnanthes minutissima, 
Synedra spp., Spirogyra 

  - vertically distributed/resolved 
- filamentous and non-
filamentous algae simulated 
- successfully simulated algal 
succession and detachment 
- self-shading, mat depth, Droop 
kinetics included 
- drag force, buoyancy of mat 
considered 

- too detailed to model a whole 
river reach, small scale only 
- many assumptions and 
coefficients (e.g., light 
attenuation through different 
types of mats) 
- constant nutrient supply 
- neglects grazing and 
respiration 
- neglects temperature 
mediation 
- neglects velocity effect on 
nutrient uptake, growth, and 
respiration rates 

Asaeda and Son (2000) 
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Table A-2: Select mechanistic river periphyton model details in addition to those presented in Table 2-1, grouped into simple models (red), models driven by prescribed 
environmental conditions (yellow), models featuring some spatial resolution and nutrient cycling (green), complex models (blue), and case-specific models (no colour).  

Model Programming 
environment 

State/Output Variables Key input forcing conditions Key modelled mechanisms Key calibration parameters Temporal/spatial 
scale 

Logistic growth model 
and variations 

various Biomass as chl a, C, DM, 
AFDM 

- initial biomass - growth, carrying capacity, 
detachment 

- max growth rate 
- biomass carrying capacity 

  

McIntire/Uehlinger 
river model 

FORTRAN 

1973 McIntire 
model written in 
MIMIC (digital 
computer 
simulation 
language, Control 
Data Corporation 
1970) 

biomass as gAFDM m-2, mg 
chl a m-2 

- mean daily temperature 
- daily light intensity 
- minimal biomass 
- nutrient concentrations 

- light and temperature mediated 
growth 
- biomass carrying capacity 
- grazing sometimes included 
- chronic, catastrophic, and 
autotrophic (temp. and bacteria 
driven) detachment 
- algal succession 
- Droop kinetics 
- velocity dependent nutrient 
delivery 

- variable parameterisation for diff. 
algal assemblages 
- 11 empirical parameters: max 
growth rate, biomass half saturation 
constant, light half sat. const., 
coefficient of temp. dependence, 
empirical chronic, catastrophic, and 
autogenic detachment coefficients 
- 3 bacteria submodel coefficients 

3 h time step 

Horner model  biomass as mg chl a m-2 - velocity at algal cell surface - first order growth 
- scour 
- P limitation via Michaelis-Menten 
kinetics 
- light limitation according to 
Steele (1962) 
- turbulent and laminar flow 
effects 

- max biomass 
- mass transfer coefficient with 
turbulent diffusion 
- mass transfer coefficient In laminar 
flow 
- light factor 
- 3 model fitting parameters 
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Model Programming 
environment 

State/Output Variables Key input forcing conditions Key modelled mechanisms Key calibration parameters Temporal/spatial 
scale 

Hornberger and Spear 
model 

 - Cladophora biomass as g P - light, temperature, 
evaporation 
- flows, river phytoplankton 
and P concentration (dissolved 
and particulate), tidal 
exchange 
- groundwater flow and P 
concentration 

- linear light- and temperature-
mediated growth 
- Michaelis-Menten P limitation 
- biomass limitation (carrying 
capacity with max biomass 
constant) 
- combined loss rate to capture 
losses due to death, respiration, 
grazing, and sloughing 
- periphyton model linked to 
phytoplankton and sediment-
water exchange P model 

- max growth rate 
- half-saturation constant for P 
limitation 
- max biomass carrying capacity 
- loss rate 
- “nutrient source parameter” 

daily 

Parsimonious River 
Model, Cladophora 
River Model 

 - periphyton biomass as DM 
mg m-2 

- available P (mg L-1) 
- available N (mg L-1) 
- organic matter as C (mg L-

1) 

- light, temperature, nutrient 
loading 
- river depth and velocity 

- zero order periphyton growth, 
Arrhenius temperature 
dependence, Michaelis-Menten 
light and nutrient limitation 
- periphyton respiration and 
excretion 
- periphyton death or sloughing 
- hydrolysis and decomposition 

- max growth rate 

- fixed stoichiometry for all organic 
fractions (C:N:P:A of 40:7.2:1:1) 
- light extinction coefficient 
- half-saturation constants 
- reaeration rate 
- respiration, death rates 
- max biomass carrying capacity 

  

Tukituki River Model 
(TRIM), Stream 
Algorithm (SAL) 

- Visual Basic for 
Applications in MS 
Excel 
- 2-step Huan 
method (Chapra 
and Canale 2006) 

Periphyton biomass (gC m-
2), AMM, DIN, DON, PON, 
CN from biomass and fixed 
C/N ratio, DRP, DOP, PP, CP 
from biomass and fixed C/P 
ratio, SS, TN, TP 

- nutrients, modelled light and 
temperature 
- biomass 
- daily river flows 
- AMM inflows only from point 
source discharges 

- hydraulics 
- photosynthesis 
- respiration 
- mortality and scour 
- Monod kinetics for nutrient 
uptake and limitation 
- TP adsorption/desorption to bed 
sediments (TRIM2) 
- settling of scoured biomass 
- recycling by respiration and 
hydrolysis 

- 35, greater than the number of 
independent variables (8) so 
overdetermined 
- 22 parameters based on 
measurements 
- 13 parameters determined by 
calibration 
 
TRIM2: 25 re-calibrated coefficients, 
11 of which strongly influence model 
predictions but no experimental data 
or lit values are available 

daily averages for each 
river segment based 
on sub-daily time step 
(depends on river 
velocity and segment 
length) 
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Model Programming 
environment 

State/Output Variables Key input forcing conditions Key modelled mechanisms Key calibration parameters Temporal/spatial 
scale 

ISOFLOC (Isotope-based 
Fluvial Organic Carbon) 
Model 

  Carbon: dissolved inorganic 
(DIC), dissolved organic 
(DOC), algal particulate 
organic (APOC), fine 
particulate organic (FPOC, 
in silt and clay sized 
particles) 

C concentrations in sediments, 
DOC, DIC, bathymetry 

- hydrology-hydraulics 
- sediment transport 
- organic carbon cycling 

- inflow DOC, DIC, POC, PIC 
- carrying capacity parameters 
- critical shear stress for algal 
detachment 
- endogenous mineralization 
calibration coefficient for algal C and 
N recycling 
- TP and N limitations 
- algal growth and decomposition 
parameters 

Reach scale 

TRANSFER (Technology 
for Removable Annual 
Nitrogen in Streams For 
Ecosystem Restoration) 

Fortran, Intel 
Fortran Composer 
in Visual Studio 
2015 

DIN, algal and sediment N 
species 

C from ISOFLOC 
 

- N cycling (NH4 and NO3 
assimilation, denitrification, 
nitrification, N uptake, N release) 
- temperature-dependent bacteria 
degradation 

- critical shear stress for algal 
detachment 
- endogenous mineralization 
calibration coefficient for algal C and 
N recycling 

  

AQUATOX - free download of 
the program 
- open-source code 
available online, 
must be compiled 
with Delphi 2007 
Professional 
(purchase) 

- total nitrogen (TN), total 
phosphorus (TP), dissolved 
oxygen (DO) in Joyner and 
Rohli (2013) 
- % cyano biomass of 
sestonic algae, benthic chl a 
in Carleton et al. (2009) 

- site characteristics 
- nutrient loadings 
- light, water temp., wind, pH, 
water volume (or can be state 
variables) 

- chemodynamics of neutral and 
ionized organic chemicals 
- bioaccumulation as a function of 
sorption and biokinetics 
- biotransformation of daughter 
products 
- sublethal and lethal toxicity 

- transformation rates Daily 

QUAL2K, AT2K 

 

Others:  
CE-QUAL-ICM and CE-
QUAL-W2 

- Fortran90 
- User interface via 
Microsoft Excel 
- Interface 
operations coded 
using Visual Basic 
for Applications 

Dry mass, chlorophyll, 
Carbon (gC m-2), DO, BOD, 
TN, fecal coliforms, CBODu, 
NH4-N, temperature, pH, 
SOD, NO2-N, NO3-N, 
organic and inorganic P 

Nutrients, light and 
temperature, wind speed, 
hydraulic characteristics of the 
river (reach length, mean 
slope, dispersion coefficient, 
velocity, reaeration constant), 
loading data 

- respiration 
- mortality 
- Droop kinetics for nutrient 
limitation 

- C, N, P, DM, chl a, ISS settling 
velocity 
- aeration model 
- CBOD hydrolysis and oxidation rates 
- N and P transformation rates 
- kinetic rate parameters (growth, 
respiration, death rates; half 
saturation constants) 
- bottom plant rates and constants, 
fecal coliform decay and settling 
rates, COD decay and settling rates 
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Model Programming 
environment 

State/Output Variables Key input forcing conditions Key modelled mechanisms Key calibration parameters Temporal/spatial 
scale 

Water Quality Analysis 
Simulation Program 
(WASP) 

Standalone 
software 

biomass as gDM m-2 - nutrient concentrations 
- light 
- temperature 
- initial biomass 

- based on bottom algae 
algorithms from QUAL2K 
- Droop kinetics for nutrient 
limitation, assuming fixed internal 
stoichiometry 
- respiration, mortality 

  

River Water Quality 
Model (RWQM, 
RWQM1) 

MS Excel - up to 24 (11 in simple 
version) 
 - Ca2+ 
- heterotrophic organisms 
growing aerobically and 
anoxically 
- organisms oxidising 
ammonia to nitrite 
- organisms oxidising nitrite 
to nitrate 
- algae and macrophytes 
- consumers 

- physical parameters 
- light, temperature, nutrient 
loading 

- aerobic growth of heterotrophs 
- anoxic growth of heterotrophs 
- aerobic endogenous respiration 
- anoxic endogenous respiration of 
heterotrophic organisms 
- growth of 1st stage nitrifiers 
- growth of 2nd stage nitrifiers 
- growth of algae 
- death of algae or consumers 
- growth of consumers by grazing 
on algae 
- hydrolysis 
- adsorption of phosphate 
- desorption of phosphate 

many (see Reichert et al. 2001) 
'- 13 stoichiometric coefficients 
- 36 kinetic parameters 
- 6 equilibrium parameters 
- 36 mass fractions 
- more when benthic sediment is 
included 

variable (can be 
minutes) 
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Model Programming 
environment 

State/Output Variables Key input forcing conditions Key modelled mechanisms Key calibration parameters Temporal/spatial 
scale 

Deltares modelling 
suite with 
1) hydrodynamic model 
Delft3D Flexible Mesh 
(Delft3D FM, succeeds 
Delft3D 4, SOBEK 2) 

2) water quality model 
framework: DELWAQ 
(Delft Water Quality) 

Standalone 
software, GUI, can 
add subroutines in 
Python or other 
languages 

User defined varies with selected simulated 
processes 

User defined 

- hydrodynamics 

- sediment transport 

- sediment-water exchange 

- morphology 

- water quality and ecological 
processes within DELWAQ 

- integrated phytoplankton model 
for different groups (BLOOM) 

varies with selected simulated 
processes 

User defined 

Buzzelli Shark Slough, 
Everglades N.P. 

 - channel water volume 
- periphyton P and organic C 
(compared with measured 
AFDM) 
- total P  

- temperature 
- light intensity (modelled 
mean) 
- depth 
- TP loading 

- Arrhenius temperature 
mediation 
- Michaelis-Menten kinetics for TP 
and light 
- logistic density function 

- max growth rate 
- basal respiration rate 
- fractional respiration 
- basal mortality rate 
- max biomass carrying capacity 
- half sat. constants for TP and light 
- periphyton mat thickness 
- periphyton coverage 
- fraction of recycled periphyton P 
- assumed atmospheric P source 

Daily (with 45 min time 
step) 
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Model Programming 
environment 

State/Output Variables Key input forcing conditions Key modelled mechanisms Key calibration parameters Temporal/spatial 
scale 

Transient storage zone 
(TSZ) model 

  - N in living periphyton 
biomass 
- N in detritus 
- N in free-flowing water 
- N in TSZ 

- river flow/discharge 
- mean subsurface velocity 
- exchange area 
- surface water depth 
- hyporheic sediment depth 
- pore space 
- N concentration upstream 

- first order mass transfer between 
3 zones 
- uptake based on Monod kinetics 

- 3 zone volumes 
- 2 transfer coefficients: free-flowing 
water ↔ TSZ, biomass ↔ detritus 
- rate coefficients: nutrient loss as 
export/drift away 
- self-limitation factor in uptake 
equation 

  

Surface-subsurface 
exchange model 
(extended TSZ model) 

  - N in living periphyton 
biomass 
- inorganic N in detritus 
- inorganic N in free-flowing 
water 
- inorganic N in detritus 
- organic N in free-flowing 
water 
- organic N in TSZ 
- organic N in TSZ 

- hydraulics 
- inorganic N concentration 
upstream 
- organic N concentration 
upstream 

- "stiff system" with high rates of 
change oth other components 
- stiff algorithm 

- 7 nutrient cycling coefficients   

Periphyton model 
added to ProSe, based 
on RIVE model (Billen 
et al. 1994) 

  - carbon 
- biomass as gAFDM m-2, 
mg chl a m-2 

- upstream nutrient loads 
- light 

- light-mediated growth (Beer-
Lambert Law, Platt 1980 P/I 
formulation) 
- nitrifying bacteria growth in 
periphyton mat, limited by 
biomass, oxygen, nutrients 
(Michaelis-Menten kinetics) 
- heterotrophic bacteria growth in 
periphyton mat, limited by organic 
substrate and oxygen (Michaelis-
Menten kinetics) 
- scour as function of critical slope 
(depends on critical flow threshold 
and duration of flood event) 

- max growth rates for periphyton 
and bacteria 
- photosynthesis/irradiance curve 
parameters 
- half-saturation constants for 
oxygen, bacterial biomass, NH4, 
organic substrate 
- critical coefficients for scouring 
mechanism 
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Model Programming 
environment 

State/Output Variables Key input forcing conditions Key modelled mechanisms Key calibration parameters Temporal/spatial 
scale 

Vertical stream 
periphyton biomass 
accumulation model 

FORTRAN90, 
fourth order 
Runge-Kutta 
method 

filament length, cell 
density (cells mm-2) 

- light 
- water velocity 

- periphyton growth: light and 
nutrient-limited 
- internal and external N and P 
concentrations 
- self-shading within the mat 
- mortality 
- detachment (regular and 
catastrophic, buoyancy vs drag 
force, light and community 
compactness influence tensile 
strength as by Liebig's Law of the 
Minimum) 

For filamentous and non-filamentous 
species (each): 
- light attenuation through the 
periphyton mat 
- light half-saturation coefficient 
- mortality rate 
- temperature constant 
- cell biovolume from cell shape and 
size 
- reproduction rate (cell divisions per 
day) 
- threshold filament strength 
- surface area of filamentous cells 
- half-saturation coefficient for max 
detachment rate 

30 day simulations 
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Appendix B Mechanistic periphyton model development steps 
The following steps are recommended to develop a mechanistic river periphyton model such as the 
parsimonious river model (Chapra et al. 2014) to be used to set nutrient criteria: 
 

1) Define target question(s) to be answered, characteristics of the specific river reach(es) of 

interest, and associated assumptions. 

- The target question may be: What in-river nutrient loads and/or in-river 

concentrations will allow us to meet target periphyton biomass (chlorophyll a) levels 

in a river reach? 

- To which river reach or system will the model be applied? 

- What are the external (catchment source) and internal (sediment source) loads to 

the system? Load is defined as mass per time and the product of nutrient 

concentration (mass per volume) and flow (volume per time). The main assumption 

would be that nutrients are the management variable. 

2) Define the required model resolution, which often depends on available input and 

calibration/confirmation data and computational demands. 

- Is the model spatially resolved? If so, over how many dimensions? How is the river 

reach network resolved? What is the required geographic scale or spatial extent over 

which the model can be applied? 

- Similarly, what is the required time scale over which the model should be run, 

including spin-up time (e.g., a year, month, week, day)? 

- What is the required ecosystem process resolution (e.g., total periphyton 

/periphyton group/periphyton species processes, total grazer/groups of grazer 

processes, inclusion/exclusion of higher trophic levels, level of detail in nutrient 

cycling)? 

- What is the required spatial resolution (e.g., 10 km, 1 km, 1 m, 1 mm)? 

- What is the required temporal resolution (e.g., annual, monthly, weekly, daily, 

hourly)? 

3) Define the required model structure. What are the required state variables (e.g., periphyton 

biomass, stored nutrient concentrations, in-river nutrient concentrations) and mass balance 

equations? What are the modelled processes as part of each differential equation describing the 

rate of change of a state variable? This requires testing various levels of model complexity 

(number of simulated state variables and processes). In addition, data assimilation methods 

show promise for improving mechanistic model prediction; they are means to include empirical 

data or prior model output at each time step (e.g., Shao et al. 2016). 

4) Choose a numerical method to solve the mass balance(s) (e.g., Euler method or higher order 

Runge-Kutta) and a suitable computational platform/software package (e.g., FORTRAN, 

MATLAB, VBA Excel, R, DeltaShell). 
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5) Define the data requirements to run the model. What are the required model inputs, i.e., the 

environmental forcing conditions (solar irradiance, temperature, etc.) and user-defined initial 

conditions and model parameters (e.g., starting biomass and maximum specific growth rate)? 

6) Design and conduct high resolution, long-term field monitoring to define site-specific model 

parameters (especially rate constants) and establish calibration and confirmation data sets. The 

data should be in the form of the model output (state variables). 

7) Calibrate the model. Run the model and compare model output with observational data. In 

comparison to measurements, does the model successfully predict the direction and magnitude 

of periphyton biomass over time? Maximise the goodness of fit using statistical approaches (e.g., 

minimise the RMSE) to define model parameters (e.g., an acceptable range of values for the 

maximum specific growth rate). 

8) Confirm the model. Use another dataset similar to but different than that used to calibrate the 

model (e.g., obtained at a different location in the modelled system and/or at a different time). 

Run the model for these new conditions without changing model parameters. Compare model 

output with this second set of observational data. In comparison to this set of measurements, 

does the model still successfully predict the direction and magnitude of periphyton biomass over 

time? Repeat the confirmation processes across sites of interest. 

9) Determine model sensitivity and uncertainty. Consider the uncertainty in observational data due 

to field collecting and laboratory analysis methods. 


